SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    David Bolin, Jonas Wallin, Spatially adaptive covariance tapering, Spatial Statistics, 2016,

    CrossRef

  2. 2
    Mehdi Omidi, Mohsen Mohammadzadeh, A new method to build spatio-temporal covariance functions: analysis of ozone data, Statistical Papers, 2015,

    CrossRef

  3. 3
    K. Shuvo Bakar, Philip Kokic, Huidong Jin, A spatiodynamic model for assessing frost risk in south-eastern Australia, Journal of the Royal Statistical Society: Series C (Applied Statistics), 2015, 64, 5
  4. 4
    A. Lavigne, N. Eckert, L. Bel, E. Parent, Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences, Journal of the Royal Statistical Society: Series C (Applied Statistics), 2015, 64, 4
  5. 5
    Lijie Guo, Liping Lei, Zhao-Cheng Zeng, Pengfei Zou, Da Liu, Bing Zhang, Evaluation of Spatio-Temporal Variogram Models for Mapping Xco<sub>2</sub> Using Satellite Observations: A Case Study in China, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1, 376

    CrossRef

  6. 6
    S. De Iaco, M. Palma, D. Posa, Spatio-temporal geostatistical modeling for French fertility predictions, Spatial Statistics, 2015, 14, 546

    CrossRef

  7. 7
    Honorat GM Zouré, Mounkaila Noma, Afework H Tekle, Uche V Amazigo, Peter J Diggle, Emanuele Giorgi, Jan HF Remme, The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected, Parasites & Vectors, 2014, 7, 1, 326

    CrossRef

  8. 8
    David Bolin, Finn Lindgren, A comparison between Markov approximations and other methods for large spatial data sets, Computational Statistics & Data Analysis, 2013, 61, 7

    CrossRef

  9. 9
    S. De Iaco, D. Posa, D.E. Myers, Characteristics of some classes of space–time covariance functions, Journal of Statistical Planning and Inference, 2013, 143, 11, 2002

    CrossRef

  10. 10
    S. De Iaco, D. Posa, Positive and negative non-separability for space–time covariance models, Journal of Statistical Planning and Inference, 2013, 143, 2, 378

    CrossRef

  11. 11
    Alexandre Rodrigues, Peter J. Diggle, Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance, Journal of the American Statistical Association, 2012, 107, 497, 93

    CrossRef

  12. 12
    A. Zammit-Mangion, M. Dewar, V. Kadirkamanathan, G. Sanguinetti, Point process modelling of the Afghan War Diary, Proceedings of the National Academy of Sciences, 2012, 109, 31, 12414

    CrossRef

  13. 13
    S. De Iaco, D. Posa, Predicting spatio-temporal random fields: Some computational aspects, Computers & Geosciences, 2012, 41, 12

    CrossRef

  14. 14
    D. Pati, B. J. Reich, D. B. Dunson, Bayesian geostatistical modelling with informative sampling locations, Biometrika, 2011, 98, 1, 35

    CrossRef

  15. 15
    Thomas R. Fanshawe, Peter J. Diggle, Bivariate geostatistical modelling: a review and an application to spatial variation in radon concentrations, Environmental and Ecological Statistics, 2011,

    CrossRef