A common problem in sociology, psychology, biology, geography, and management science is the comparison of dyadic relational structures (i.e., graphs). Where these structures are formed on a common set of elements, a natural question that arises is whether there is a tendency for elements that are strongly connected in one set of structures to be more—or less—strongly connected within another set. We may ask, for instance, whether there is a correspondence between golf games and business deals, trade and warfare, or spatial proximity and genetic similarity. In each case, the data for such comparisons may be continuous or discrete, and multiple relations may be involved simultaneously (e.g., when comparing multiple measures of international trade volume with multiple types of political interactions). We propose here an exponential family of permutation models that is suitable for inferring the direction and strength of association among dyadic relational structures. A linear-time algorithm is shown for MCMC simulation of model draws, as is the use of simulated draws for maximum likelihood estimation (MCMC-MLE) and/or estimation of Monte Carlo standard errors. We also provide an easily performed maximum pseudo-likelihood estimation procedure for the permutation model family, which provides a reasonable means of generating seed models for the MCMC-MLE procedure. Use of the modeling framework is demonstrated via an application involving relationships among managers in a high-tech firm.