• Allison, Paul D. 2002. Missing Data. Thousand Oaks , CA : Sage.
  • Allison, Paul D. 2005. “Imputation of Categorical Variables with PROC MI,” Presented at the 30th Meeting of SAS Users Group International, April 10–13, Philadephia, PA. Retrieved May 29, 2007 (
  • Bodner, T. E. 2008. “What Improves with Increased Missing Data Imputations Structural Equation Modeling 15(4):65175.
  • Johnson, Richard A., and Dean W. Wichern. 2003. Applied Multivariate Statistical Analysis. 5th ed. New York : Prentice Hall.
  • Little, Roderick J. A. 1992. “Regression with Missing X's: A Review. Journal of the American Statistical Association 87(420):122737.
  • Little, Roderick J. A., and Donald B. Rubin. 2002. Statistical Analysis with Missing Data, 2nd ed. New York : Wiley.
  • Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks , CA : Sage.
  • Raghunathan, T. E., Peter Solenberger, and John Van Hoewyk. 2002. “IVEware: Imputation and Variance Estimation Software.” User manual. Survey Methodology Program, University of Michigan. Retrieved June 19, 2008 (
  • Rice, John A. 1994. Mathematical Statistics and Data Analysis. Belmont , CA : Duxbury.
  • Rose, Colin, and Murray Smith. 2002. Mathematical Statistics with Mathematica. New York : Springer.
  • Royston, Patrick. 2005. “Multiple Imputation of Missing Values: Update. Stata Journal 5(2):114.
  • Rubin, Donald B. 1987. Multiple Imputation for Survey Nonresponse. New York : Wiley.
  • Von Hippel, Paul T. 2007. “Regression with Missing Ys: An Improved Strategy for Analyzing Multiply-Imputed Data.” Pp. 83117 in Sociological Methodology, vol. 37, edited by YuXie. Boston , MA : Blackwell Publishing.
  • Von Hippel, Paul T. 2009. “Imputing Skewed Variables.” Ohio State University . Unpublished manuscript.
  • Wolfram Software. 2005. Mathematica Version 5.2.
  • Wooldridge, Jeffrey M. 2002. Econometric Analysis of Cross-Section and Panel Data. Cambridge , MA : MIT Press.