SEARCH

SEARCH BY CITATION

References

  • Aït-Sahalia, Y. (2002), Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach, Econometrica 70, 223262.
  • Alspach, D. and H. Sorenson (1972), Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE Transactions on Automatic Control 17, 439448.
  • Andersen, T. and J. Lund (1997), Estimating continuous-time stochastic volatility models of the short-term interest rate, Journal of Econometrics 77, 343377.
  • Arnold, L. (1974), Stochastic differential equations, John Wiley, New York.
  • Bandi, F. and P. Phillips (2003), Fully nonparametric estimation of scalar diffusion models, Econometrica 71, 241283.
  • Bartlett, M. (1946), On the theoretical specification and sampling properties of autocorrelated time-series, Journal of the Royal Statistical Society (Supplement) 7, 2741.
  • Bergstrom, A. (1976), Non recursive models as discrete approximations to systems of stochastic differential equations, in: A.Bergstrom (ed.), Statistical inference in continuous time models, North Holland, Amsterdam, 1526.
  • Black, F. and M. Scholes (1973), The pricing of options and corporate liabilities, Journal of Political Economy 81, 637654.
  • Challa, S., Y. Bar-Shalom and V. Krishnamurthy (2000), Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature, IEEE Transactions on Signal Processing 48, 18161820.
  • Coleman, J. (1968), The mathematical study of change, in: H.Blalock and A. B.Blalock (eds.), Methodology in social research, McGraw-Hill, New York, 428478.
  • Daum, F. (2005), Nonlinear filters: beyond the Kalman filter, IEEE A&E Systems Magazine 20, 5769.
  • Dennis, J. Jr. and R. Schnabel (1983), Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall, Englewood Cliffs, NJ.
  • Elerian, O., S. Chib and N. Shephard (2001), Likelihood inference for discretely observed nonlinear diffusions, Econometrica 69, 4, 959993.
  • Frey, M. (1996), A Wiener filter, state-space flux-optimal control against escape from a potential well, IEEE Transactions on Automatic Control 41, 216223.
  • Gardiner, C. (1996), Handbook of stochastic methods, 2nd edn, Springer, Berlin, Heidelberg, New York.
  • Haken, H. (1977), Synergetics, Springer, Berlin.
  • Hamerle, A., W. Nagl and H. Singer (1991), Problems with the estimation of stochastic differential equations using structural equations models, Journal of Mathematical Sociology 16, 201220.
  • Hamerle, A., W. Nagl and H. Singer (1993), Identification and estimation of continuous time dynamic systems with exogenous variables using panel data, Econometric Theory 9, 283295.
  • Harvey, A. and J. Stock (1985), The estimation of higher order continuous time autoregressive models, Econometric Theory 1, 97112.
  • Herings, J. (1996), Static and dynamic aspects of general disequilibrium theory, Kluwer, Boston, London, Dordrecht.
  • Ito, K. and K. Xiong (2000), Gaussian filters for nonlinear filtering problems, IEEE Transactions on Automatic Control 45, 910927.
  • Jazwinski, A. (1970), Stochastic processes and filtering theory, Academic Press, New York.
  • Jensen, B. and R. Poulsen (2002), Transition densities of diffusion processes: numerical comparision of approximation techniques, Institutional Investor, Summer 2002, 1832.
  • Jones, R. (1993), Longitudinal data with serial correlation: a state space approach, Chapman and Hall, New York.
  • Jones, R. and L. Ackerson (1990), Serial correlation in unequally spaced longitudinal data, Biometrika 77, 721731.
  • Jones, R. and F. Boadi-Boateng (1991), Unequally spaced longitudinal data with AR(1) serial correlation, Biometrics 47, 161175.
  • Julier, S. and J. Uhlmann (1997), A new extension of the Kalman filter to nonlinear systems, The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Control, Orlando, FL.
  • Julier, S., J. Uhlmann and H. F. Durrant-White (2000), A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control 45, 477482.
  • Liptser, R. and A. Shiryayev (1977, 1978), Statistics of random processes, Volumes I and II, Springer, New York, Heidelberg, Berlin.
  • Merton, R. (1990), Continuous-time finance, Blackwell, Cambridge, MA; Oxford UK.
  • Nowman, K. (1997), Gaussian estimation of single-factor continuous time models of the term structure of interest rates, Journal of Finance 52, 16951703.
  • Oud, J. and R. Jansen (1996), Nonstationary longitudinal LISREL model estimation from incomplete panel data using EM and the Kalman smoother, in: U.Engel and J.Reinecke (eds.), Analysis of change, de Gruyter, Berlin, New York, 135159.
  • Oud, J. and R. Jansen (2000), Continuous time state space modeling of panel data by means of SEM, Psychometrika 65, 199215.
  • Pedersen, A. (1995), A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scandinavian Journal of Statistics 22, 5571.
  • Shoji, I. (2002), Nonparametric state estimation of diffusion processes, Biometrika 89, 451456.
  • Shoji, I. and T. Ozaki (1997), Comparative study of estimation methods for continuous time stochastic processes, Journal of Time Series Analysis 18, 485506.
  • Shoji, I. and T. Ozaki (1998), A statistical method of estimation and simulation for systems of stochastic differential equations, Biometrika 85, 240243.
  • Singer, H. (1993), Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components, Journal of Time Series Analysis 14, 527545.
  • Singer, H. (1995), Analytical score function for irregularly sampled continuous time stochastic processes with control variables and missing values, Econometric Theory 11, 721735.
  • Singer, H. (1998), Continuous panel models with time dependent parameters, Journal of Mathematical Sociology 23, 7798.
  • Singer, H. (1999), Finanzmarktökonometrie. Zeitstetige Systeme und ihre Anwendung in Ökonometrie und empirischer Kapitalmarktforschung, Physica-Verlag, Heidelberg.
  • Singer, H. (2002), Parameter estimation of nonlinear stochastic differential equations: simulated maximum likelihood vs. extended Kalman filter and Itô-Taylor expansion, Journal of Computational and Graphical Statistics 11, 972995.
  • Singer, H. (2003), Simulated maximum likelihood in nonlinear continuous-discrete state space models: importance sampling by approximate smoothing, Computational Statistics 18, 79106.
  • Singer, H. (2006a), Continuous-discrete unscented Kalman filtering, Diskussionsbeiträge Fachbereich Wirtschaftswissenschaft 384, FernUniversität in Hagen, http://www.fernuni-hagen.de/FBWIWI/forschung/beitraege/pdf/db384.pdf.
  • Singer, H. (2006b), Generalized Gauss-Hermite filtering, Diskussionsbeiträge Fachbereich Wirtschaftswissenschaft 391, FernUniversität in Hagen, http://www.fernuni-hagen.de/FBWIWI/forschung/beitraege/pdf/db391.pdf.
  • Singer, H. (2006c), Generalized Gauss-Hermite filtering for multivariate diffusion processes, Diskussionsbeiträge Fachbereich Wirtschaftswissenschaft 402, FernUniversität in Hagen, http://www.fernuni-hagen.de/FBWIWI/forschung/beitraege/pdf/db402.pdf.
  • Singer, H. (2006d), Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models, Computational Statistics 21, 385397.
  • Singer, H. (2007), Stochastic differential equation models with sampled data, in: K.Van Montfort, H.Oud and A.Satorra (eds.), longitudinal models in the behavioral and related sciences, The European Association of Methodology (EAM) Methodology and Statistics series, vol. II, Lawrence Erlbaum Associates, Mahwah, London, 73106.
  • Sitz, A., U. Schwarz and J. Kurths (2002a), The unscented Kalman filter, a powerful tool for data analysis, International Journal of Bifurcation and Chaos 14, 6, 20932105.
  • Sitz, A., U. Schwarz, J. Kurths and H. Voss (2002b), Estimation of parameters and unobserved components for nonlinear systems from noisy time series, Physical Review E 66, 016210-1–016210-9.
  • Srinivasan, K. (1970), State estimation by orthogonal expansion of probability distributions, IEEE Transactions on Automatic Control 15, 310.
  • Van Kampen, N. (1981), Itô vs. Stratonovich, Journal of Statistical Physics 24, 175187.