• Akaike, H. (1973), Proceedings of 2nd international symposium on information theory. In: B. N. Petrov, and F. Csaki (eds), Information theory and an extension of the maximum likelihood principle, Budapest, pp. 267281.
  • Akaike, H. (1974), A new look at the statistical model identification, IEEE Transaction on Automatic Control 19, 716723.
  • Burnham, K. P. and D. Anderson (2002), Model selection and multimodel inference: a practical information-theoretic approach (2nd edition) . Springer-Verlag, New York.
  • Cavanaugh, J. E. and R. H. Shumway (1998), An akaike information criterion for model selection in the presence of incomplete data. Journal of Statistical Planning and Inference 67, 4565.
  • Claeskens, G. and F. Consentino (2008), Variable selection with incomplete covariate data. Biometrics 64, 10621096.
  • Dempster, A. P., N. M. Laird and D. B. Rubin (1977), Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 138.
  • Hens, N., M. Aerts and G. Molenberghs (2006), Model selection for incomplete and design-based samples. Statistics in Medicine 25, 25022520.
  • Hurvich, C. M. and C.-L. Tsai (1989), Regression and time series model selection in small samples. Biometrika 76, 297307.
  • Jamshidian, M. (2004), Strategies for analysis of missing data. In: M. Hardy, and A. Breiman (eds), Handbook of Data Analysis pp. 113130. Sage, London.
  • Jamshidian, M. and P. M. Bentler (1999), ML estimation of mean and covariance structures and missing datausing complete data routines. Journal of Educational and Behavioral Statistics 24, 2141.
  • Johnston, J. and J. DiNardo (1997), Econometric methods. McGraw-Hill, New York.
  • Little, R. J. A. and D. B. Rubin (1987), Statistical analysis with missing data. Wiley, New York.
  • Liu, M., L. Wei and J. Zhang (2006), Review of guidelines and literature for handling missing data in longitudinal clinical trials with case study. Pharmaceutical Statistics 5, 718.
  • Neath, A. A. and J. E. Cavanaugh (2006), A Bayesian approach to the multiple comparisons problem. Journal of Data Science 4, 131146.
  • Schafer, J. L. (1997) Analysis of incomplete multivariate data. Chapman and Hall, London.
  • Schafer, J. L. and J. W. Graham (2002), Missing data: our view of the state of art. Psychological Methods 7, 147177.
  • Scheffer, J. (2002), Dealing with missing data. Research Letters in the Information and Mathematical Sciences 3, 153160.
  • Woods, H., H. Steiner and H. Starke (1932), Effects of composition of portland cement on heat evolved duringhardening. Industrial and Engineering Chemistry 24, 12071214.