SEARCH

SEARCH BY CITATION

References

  • Adams, R. (2002) Scaling PISA cognitive data. In PISA 2000 Technical Report (eds R.Adams and M.Wu), pp. 99108. Paris: Organisation for Economic Co-operation and Development.
  • Asparouhov, T. (2005) Sampling weights in latent variable modeling. Struct. Equn Modlng, 12, 411434.
  • Binder, D. A. (1983) On the variances of asymptotically normal estimators from complex surveys. Int. Statist. Rev., 51, 279292.
  • Binder, D. A. and Roberts, G. R. (2003) Design-based and model-based methods for estimating model parameters. In Analysis of Survey Data (eds R. L.Chambers and C. J.Skinner), pp. 2948. Chichester: Wiley.
  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 925.
  • Chambers, R. L. (2003) Introduction to Part A. In Analysis of Survey Data (eds R. L.Chambers and C. J.Skinner), pp. 1327. Chichester: Wiley.
  • Chambers, R. L. and Skinner, C. J. (eds) (2003) Analysis of Survey Data. Chichester: Wiley.
  • Clogg, C. C. and Eliason, S. R. (1987) Some common problems in log-linear analysis. Sociol. Meth. Res., 16, 844.
  • Cochran, W. G. (1977) Sampling Techniques, 3rd edn. New York: Wiley.
  • Ganzeboom, H. G. B., De Graaf, P., Treiman, D. J. and De Leeuw, J. (1992) A standard international socio-economic index of occupational status. Socl Sci. Res., 21, 156.
  • Goldstein, H. (1991) Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78, 4551.
  • Goldstein, H. (2003) Multilevel Statistical Models, 3rd edn. London: Arnold.
  • Graubard, B. I. and Korn, E. L. (1996) Modeling the sampling design in the analysis of health surveys. Statist. Meth. Med. Res., 5, 263281.
  • Grilli, L. and Pratesi, M. (2004) Weighted estimation in multilevel ordinal and binary models in the presence of informative sampling designs. Surv. Methodol., 30, 93103.
  • Isaki, C. T. and Fuller, W. A. (1982) Survey design under the regression super-population model. J. Am. Statist. Ass., 77, 8996.
  • Kish, L. (1965) Survey Sampling. London: Wiley.
  • Korn, E. L. and Graubard, B. I. (2003) Estimating variance components by using survey data. J. R. Statist. Soc. B, 65, 175190.
  • Kǒvacević, M. S. and Rai, S. N. (2003) A pseudo maximum likelihood approach to multilevel modelling of survey data. Communs Statist. Theory Meth., 32, 103121.
  • Lemke, M., Calsyn, C., Lippman, L., Jocelyn, L., Kastberg, D., Liu, Y., Roey, S., Williams, T., Kruger, T. and Bairu, G. (2001) Outcomes of Learning: Results from the 2000 Program for International Student Assessment of 15-year-olds in Reading, Mathematics, and Science Literacy. Washington DC: National Center for Education Statistics.
  • Little, R. J. A. (1982) Models for nonresponse in sample surveys. J. Am. Statist. Ass., 77, 237250.
  • Longford, N. T. (1995a) Model-based methods for analysis of data from 1990 NAEP Trial State Assessment. Research and Development Report NCES 95-696. Washington DC: National Center for Education Statistics.
  • Longford, N. T. (1995b) Models for Uncertainty in Educational Testing. New York: Springer.
  • Longford, N. T. (1996) Model-based variance estimation in surveys with stratified clustered designs. Aust. J. Statist., 38, 333352.
  • McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear and Mixed Models. New York: Wiley.
  • Muthén, B. O. and Satorra, A. (1995) Complex sample data in structural equation modeling. In Sociological Methodology 1995 (ed. P.Marsden), pp. 267316. Cambridge: Blackwell.
  • Organisation for Economic Co-operation and Development (2000) Manual for the PISA 2000 Database. Paris: Organisation for Economic Co-operation and Development (Available from http://www.pisa.oecd.org/dataoecd/53/18/33688135.pdf.)
  • Patterson, B. H., Dayton, C. M. and Graubard, B. I. (2002) Latent class analysis of complex sample survey data: application to dietary data (with discussion). J. Am. Statist. Ass., 97, 721741.
  • Pawitan, Y. (2001) In All Likelihood: Statistical Modelling and Inference using Likelihood. Oxford: Oxford University Press.
  • Pfeffermann, D. (1993) The role of sampling weights when modeling survey data. Int. Statist. Rev., 61, 317337.
  • Pfeffermann, D. (1996) The use of sampling weights for survey data analysis. Statist. Meth. Med. Res., 5, 239261.
  • Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H. and Rasbash, J. (1998) Weighting for unequal selection probabilities in multilevel models. J. R. Statist. Soc. B, 60, 2340.
  • Pothoff, R. F., Woodbury, M. A. and Manton, K. G. (1992) ‘Equivalent sample size’ and ‘equivalent degrees of freedom’ refinements for inference using survey weights under superpopulation models. J. Am. Statist. Ass., 87, 383396.
  • Rabe-Hesketh, S., Pickles, A. and Skrondal, A. (2003) Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statist. Modllng, 3, 215232.
  • Rabe-Hesketh, S. and Skrondal, A. (2001) Parameterization of multivariate random effects models for categorical data. Biometrics, 57, 12561264.
  • Rabe-Hesketh, S. and Skrondal, A. (2005) Multilevel and Longitudinal Modeling using Stata. College Station: Stata.
  • Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2002) Reliable estimation of generalized linear mixed models using adaptive quadrature. Stata J., 2, 121.
  • Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004a) GLLAMM manual. Technical Report 160. Divi-sion of Biostatistics, University of California, Berkeley. (Available from http://www.bepress.com/ucbbiostat/paper160/.)
  • Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004b) Generalized multilevel structural equation modeling. Psychometrika, 69, 167190.
  • Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005) Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. J. Econometr., 128, 301323.
  • Rasbash, J., Browne, W. J. and Goldstein, H. (2003) MLwiN 2.0 Command Manual, Version 2.0.01. London: Institute of Education. (Available from http://multilevel.ioe.ac.uk/download/comman20.pdf.)
  • Raudenbush, S. W. and Bryk, A. S. (2002) Hierarchical Linear Models. Thousand Oaks: Sage.
  • Renard, D. and Molenberghs, G. (2002) Multilevel modeling of complex survey data. In Topics in Modelling Clustered Data (eds M.Aerts, H.Geys, G.Molenberghs and L. M.Ryan), pp. 263272. Boca Raton: Chapman and Hall–CRC.
  • Ritz, J. and Spiegelman, D. (2004) A note about the equivalence of conditional and marginal regression models. Statist. Meth. Med. Res., 13, 309323.
  • Robins, J. M., Rotnitzky, A. G. and Zhao, L. P. (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106121.
  • Rodríguez, G. and Goldman, N. (1995) An assessment of estimation procedures for multilevel models with binary responses. J. R. Statist. Soc. A, 158, 7389.
  • Rodríguez, G. and Goldman, N. (2001) Improved estimation procedures for multilevel models with binary response: a case-study. J. R. Statist. Soc. A, 164, 339355.
  • Rubin, D. B. (1976) Inference and missing data. Biometrika, 63, 581592.
  • Sen, P. K. (1988) Asymptotics in finite populations. In Handbook of Statistics, vol. 6, Sampling (eds P. R.Krishnaiah and C. R.Rao), pp. 291331. Amsterdam: North-Holland.
  • Skinner, C. J. (1989) Domain means, regression and multivariate analysis. In Analysis of Complex Surveys (eds C. J.Skinner, D.Holt and T. M. F.Smith). Chichester: Wiley.
  • Skinner, C. J. (2005) On weight scaling for estimation in multilevel models using survey weights. Unpublished. Department of Social Statistics, University of Southampton, Southampton.
  • Skinner, C. J. and Holmes, D. J. (2003) Random effects models for longitudinal data. In Analysis of Survey Data (eds R. L.Chambers and C. J.Skinner). Chichester: Wiley.
  • Skrondal, A. and Rabe-Hesketh, S. (2003) Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267287.
  • Skrondal, A. and Rabe-Hesketh, S. (2004) Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton: Chapman and Hall–CRC.
  • Stapleton, L. (2002) The incorporation of sample weights into multilevel structural equation models. Struct. Equn Modlng, 9, 475502.
  • Vermunt, J. K. (2002) Discussion on ‘Latent class analysis of complex sample survey data: application to dietary data’. J. Am. Statist. Ass., 97, 736737.
  • Warm, T. A. (1989) Weighted likelihood estimation of ability in item response models. Psychometrika, 54, 427450.
  • Wedel, M., Ter Hofstede, F. and Steenkamp, J.-B. E. M. (1998) Mixture model analysis of complex samples. J. Classificn, 15, 225244.
  • Willms, J. D. (1986) Social class segregation and its relationship to pupils’ examination results in Scotland. Am. Sociol. Rev., 51, 224241.
  • Wolfinger, R. D. (1999) Fitting non-linear mixed models with the new NLMIXED procedure. Technical Report. SAS Institute, Cary.
  • Zeger, S. L., Liang, K.-Y. and Albert, P. S. (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics, 44, 10491060.