SEARCH

SEARCH BY CITATION

References

  • Banfield, J. D. and Raftery, A. E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803821.
  • Bearman, P. S., Moody, J. and Stovel, K. (2004) Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol., 110, 4491.
  • Breiger, R. L., Boorman, S. A. and Arabie, P. (1975) An algorithm for clustering relational data with application to social network analysis and comparison with multidimensional scaling. J. Math. Psychol., 12, 328383.
  • Celeux, G., Hurn, M. and Robert, C. (2000) Computational and inferential difficulties with mixture posterior distribution. J. Am. Statist. Ass., 95, 957970.
  • Dasgupta, A. and Raftery, A. E. (1998) Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Statist. Ass., 93, 294302.
  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Statist. Soc. B, 39, 138.
  • Diebolt, J. and Robert, C. P. (1994) Estimation of finite mixture distributions through Bayesian sampling. J. R. Statist. Soc. B, 56, 363375.
  • Doreian, P., Batagelj, V. and Ferligoj, A. (2005) Generalized Blockmodeling. Cambridge: Cambridge University Press.
  • Van Duijn, M. A. J., Snijders, T. A. B. and Zijlstra, B. H. (2004) p2: a random effects model with covariates for directed graphs. Statist. Neerland., 58, 234254.
  • Eames, K. T. D. and Keeling, M. J. (2004) Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci., 189, 115130.
  • Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai Z. and Wang, N. (2004) Modelling disease outbreaks in realistic urban social networks. Nature, 429, 180184.
  • Faust, K. (1988) Comparison of methods for positional analysis: structural and general equivalence. Socl Netwrks, 10, 313341.
  • Fienberg, S. E. and Wasserman, S. S. (1981) Categorical data analysis of single sociometric relations. Sociol. Methodol., 11, 156192.
  • Fraley, C. and Raftery, A. E. (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J., 41, 578588.
  • Fraley, C. and Raftery, A. E. (2002) Model-based clustering, discriminant analysis and density estimation. J. Am. Statist. Ass., 97, 611631.
  • Fraley, C. and Raftery, A. E. (2003) Enhanced model-based clustering, density estimation and discriminant analysis software: MCLUST. J. Classificn, 20, 263286.
  • Frank, O. and Strauss, D. (1986) Markov graphs. J. Am. Statist. Ass., 81, 832842.
  • Freeman, L. C. (1996) Some antecedents of social network analysis. Connections, 19, 3942.
  • Handcock, M. S., Tantrum, J., Shortreed, S. and Hoff, P. (2004) latentnet: an R package for latent position and cluster modeling of statistical networks. (Available from http://www.csde.washington.edu/statnet/latentnet.)
  • Harris, K. M., Florey, F., Tabor, J., Bearman, P. S., Jones, J. and Udry, R. J. (2003) The national longitudinal of adolescent health: research design. Technical Report. Carolina Population Center, University of North Carolina, Chapel Hill. (Available from http://www.cpc.unc.edu/projects/addhealth/design.)
  • Hoff, P. D. (2005) Bilinear mixed-effects models for dyadic data. J. Am. Statist. Ass., 100, 286295.
  • Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002) Latent space approaches to social network analysis. J. Am. Statist. Ass., 97, 10901098.
  • Hoff, P. D. and Ward, M. D. (2004) Modeling dependencies in international relations networks. Polit. Anal., 12, 160175.
  • Holland, P. W. and Leinhardt, S. (1981) An exponential family of probability distributions for directed graphs (with discussion). J. Am. Statist. Ass., 76, 3365.
  • Kass, R. and Raftery, A. E. (1995) Bayes factors. J. Am. Statist. Ass., 90, 773795.
  • Kretzschmar, M. and Morris, M. (1996) Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133, 165195.
  • Lazarsfeld, P. and Merton, R. (1954) Friendship as social process: a substantive and methodological analysis. In Freedom and Control in Modern Society (eds M.Berger, T.Abel and C.Page), pp. 1866. New York: Van Nostrand.
  • Liotta, G. (ed.) (2004) Graph drawing. Lect. Notes Comput. Sci., 2912.
  • Lorrain, F. and White, H. (1971) Structural equivalence of individuals in social networks blockstructures with covariates. J. Math. Sociol., 1, 4980.
  • McFarland, D. D. and Brown, D. J. (1973) Social distance as a metric: a systematic introduction to smallest space analysis. In Bonds of Pluralism: the Form and Substance of Urban Social Networks (ed. E. O.Laumann), pp. 213253. New York: Wiley.
  • McPherson, M., Smith-Lovin, L. and Cook, J. M. (2001) Birds of a feather: homophily in social networks. A. Rev. Sociol., 27, 415444.
  • Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev., 45, 167256.
  • Nowicki, K. and Snijders, T. A. B. (2001) Estimation and prediction for stochastic blockstructures. J. Am. Statist. Ass., 96, 10771087.
  • Oh, M. S. and Raftery, A. E. (2001) Bayesian multidimensional scaling and choice of dimension. J. Am. Statist. Ass., 96, 10311044.
  • Oh, M. S. and Raftery, A. E. (2003) Model-based clustering with dissimilarities: a Bayesian approach. Technical Report 441. Department of Statistics, University of Washington, Seattle.
  • Raftery, A. E. and Lewis, S. M. (1996) Implementing MCMC. In Markov Chain Monte Carlo in Practice (edsW. R.Gilks, D. J.Spiegelhalter and S.Richardson), pp. 115130. London: Chapman and Hall.
  • Sampson, S. F. (1969) Crisis in a cloister. PhD Thesis. Cornell University, Ithaca.
  • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461464.
  • Schweinberger, M. and Snijders, T. A. B. (2003) Settings in social networks: a measurement model. Sociol. Methodol., 33, 307341.
  • Sibson, R. (1979) Studies in the robustness of multidimensional scaling: perturbational analysis of classical scaling. J. R. Statist. Soc. B, 41, 217229.
  • Snijders, T. (1991) Enumeration and simulation methods for 0-1 matrices with given marginals. Psychometrika, 56, 397417.
  • Snijders, T. A. B. and Nowicki, K. (1997) Estimation and prediction for stochastic block-structures for graphs with latent block structure. J. Classificn, 14, 75100.
  • Snijders, T. A. B., Pattison, P. E., Robins, G. L. and Handcock, M. S. (2006) New specifications for exponential random graph models. Sociol. Methodol., 36, 99153.
  • Stephens, M. (2000) Dealing with label switching in mixture models. J. R. Statist. Soc. B, 62, 795809.
  • Tallberg, C. (2005) A Bayesian approach to modeling stochastic blockstructures with covariates. J. Math. Sociol., 29, 123.
  • Udry, R. J. (2003) The national longitudinal of adolescent health: (add health), waves i and ii, 1994-1996; wave iii, 2001-2002. Technical Report. Carolina Population Center, University of North Carolina, Chapel Hill.
  • Volinsky, C. T. and Raftery, A. E. (2000) Bayesian information criterion for censored survival models. Biometrics, 56, 256262.
  • Wasserman, S. S. and Anderson, C. J. (1987) Stochastic a posteriori blockmodels: construction and assessment. Socl Netwrks, 9, 136.
  • Wasserman, S. S. and Faust, K. (1994) Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.
  • White, H. C., Boorman, S. A. and Breiger, R. L. (1976) Social-structure from multiple networks: I, Blockmodels of roles and positions. Am. J. Sociol., 81, 730780.

References in the discussion

  • Airoldi, E. M. (2006) Bayesian mixed membership models of complex and evolving networks. Doctoral Dissertation. School of Computer Science, Carnegie Mellon University, Pittsburgh.
  • Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2007a) Admixtures of latent blocks with application to protein interaction networks. To be published.
  • Airoldi, E. M., Blei, D. M., Fienberg, S. E. and Xing, E. P. (2007b) Combining stochastic block models and mixed membership for statistical network analysis. Lect. Notes Comput. Sci., to be published.
  • Aldous, D. J. (1985) Exchangeability and related topics. Lect. Notes Math., 1117, 1198.
  • Atkinson, A. C. and Riani, M. (2007) Exploratory tools for clustering multivariate data. Computnl Statist. Data Anal., to be published (doi:10.1016/j.csda2006.12.034).
  • Atkinson, A. C., Riani, M. and Cerioli, A. (2004) Exploring Multivariate Data with the Forward Search. New York: Springer.
  • Atkinson, A. C., Riani, M. and Cerioli, A. (2006a) An econometric application of the forward search in clustering: robustness and graphics. In Prague Stochastics 2006 (eds M.Husková and M.Janžura), pp. 6372. Prague: Matfyz.
  • Atkinson, A. C., Riani, M. and Cerioli, A. (2006b) Random start forward searches with envelopes for detecting clusters in multivariate data. In Data Analysis, Classification and the Forward Search (eds S.Zani, A.Cerioli M.Riani and M.Vichi), pp. 163171. Berlin: Springer.
  • Azzalini, A. and Bowman, A. W. (1990) A look at some data on the Old Faithful Geyser. Appl. Statist., 39, 357365.
  • Banfield, J. D. and Raftery, A. E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803821.
  • Barbour, A. D. and Reinert, G. (2001) Small worlds. Rand. Struct. Algs, 19, 5774; correction, 25 (2004), 115.
  • Barbour, A. D. and Reinert, G. (2006) Discrete small worlds. Electron. J. Probab., 11, 12341283.
  • Bartholomew, D. J. (1987) Latent Variable Models and Factor Analysis. London: Griffin.
  • Bearman, P., Moody, J. and Stovel, K. (2004) The structure of adolescent romantic and sexual networks. Am. J. Sociol., 110, 4491.
  • Besag, J. (1986) On the statistical analysis of dirty pictures (with discussion). J. R. Statist. Soc. B, 48, 259302.
  • Blei, D. M., Ng, A. and Jordan, M. l. (2003) Latent Dirichlet allocation. J. Mach. Learn. Res., 3, 9931022.
  • Boer, P., Huisman, M., Snijders, T. and Zeggelink, E. (2003) StOCNET: an open software system for the advanced statistical analysis of social networks. (Available from http://stat.gamma.rug.nl/stocnet.)
  • Bollobas, B., Janson, S. and Riordan, O. (2006) The phase transition in inhomogeneous random graphs. Rand. Struct. Algs, to be published.
  • Borgatti, S. P., Everett, M. G. and Freeman, L. C. (2002) UCINET for Windows: Software for Social Network Analysis. Harvard: Analytic Technologies.
  • Breiger, R. L. (1974) The duality of persons and groups. Socl Forces, 53, 181190.
  • Cartwright, D. and Harary, F. (1956) Structural balance: a generalization of Heider's theory. Psychol. Rev., 63, 277292.
  • Cerioli, A., Riani, M. and Atkinson, A. C. (2006) Robust classification with categorical variables. In COMPSTAT 2006: Proc. Computational Statistics (eds A.Rizzi and M.Vichi), pp. 507519. Heidelberg: Physica.
  • Davis, J. A. and Leinhardt, S. (1972) The structure of positive interpersonal relations in small groups. In Sociological Theories in Progress, vol. 2, pp. 218251. Boston: Houghton Mifflin.
  • Doreian, P., Batagelj, V. and Ferligoj, A. (2005) Generalized Blockmodeling. Cambridge: Cambridge University Press.
  • Dorogovtsev, S. N. and Mendes, J. F. F. (2003) Evolution of Networks: from Biological Nets to the Internet and WWW. Oxford: Oxford University Press.
  • Van Duijn, M. A. J., Snijders, T. A. B. and Zijlstra, B. H. (2004) p2: a random effects model with covariates for directed graphs. Statist. Neerland., 58, 234254.
  • Durrett, R. (2006) Random Graph Dynamics. Cambridge: Cambridge University Press.
  • Erosheva, E. A. (2003) Bayesian estimation of the grade of membership model. In Bayesian Statistics 7 (eds J. M.Bernardo, A. P. Dawid, J. O. Berger, M. West, D. Heckerman, M. J. Bayarri and A. F. M. Smith), pp. 501510. Oxford: Oxford University Press.
  • Erosheva, E. A., Fienberg, S. E. and Lafferty, J. (2004) Mixed-membership models of scientific publications. Proc. Natn. Acad. Sci. USA, 97, 1188511892.
  • Fokoué, E. (2005) Mixtures of factor analyzers: an extension with covariates. J. Multiv. Anal., 95, 370384.
  • Fokoué, E. and Titterington, D. M. (2003) Mixtures of factor analysers: Bayesian estimation and inference by stochastic simulation. Mach. Learn., 50, 7394.
  • Fraley, C. and Raftery, A. E. (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J., 41, 578588.
  • Fraley, C. and Raftery, A. E. (2006) MCLUST version 3: an R package for normal mixture modeling and model-based clustering. Technical Report 504. Department of Statistics, University of Washington, Seattle.
  • Frank, O. and Strauss, D. (1986) Markov graphs. J. Am. Statist. Ass., 81, 832842.
  • Gelfand, A. E., Kim, H.-J., Sirmans, C. F. and Banerjee, S. (2003) Spatial modeling with spatially varying coefficient processes. J. Am. Statist. Ass., 98, 387396.
  • Gelman, A., Meng, X. and Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statist. Sin., 6, 753807.
  • Gelman, A., Pasarica, C. and Dodhia, R. (2002) Let's practice what we preach: turning tables into graphs. Am. Statistn, 56, 121130.
  • Ghahramani, Z. and Beal, M. (2000) Variational inference for Bayesian mixture of factor analysers. In Advances in Neural Information Processing Systems, vol. 12 (eds S. A.Solla et al. ). Cambridge: MIT Press.
  • Goodreau, S. M. (2006) Birds of a feather, or friend of a friend?: using statistical network analysis to investigate adolescent social networks. Working Paper. Center for Studies in Ecology and Demography, University of Washington, Seattle.
  • Goodreau, S. (2007) Applying advances in exponential random graph (p*) models to a large social network. Socl Networks, to be published.
  • Gormley, I. C. (2006) Statistical models for rank data. PhD Thesis. Trinity College Dublin, Dublin.
  • Gormley, I. C. and Murphy, T. B. (2005) Exploring irish election data: a mixture modelling approach. Technical Report 05/08. Department of Statistics, Trinity College Dublin, Dublin.
  • Gormley, I. C. and Murphy, T. B. (2006a) A latent space model for rank data. In Statistical Network Analysis: Models, Issues, and New Directions. New York: Springer. To be published.
  • Gormley, I. C. and Murphy, T. B. (2006b) Analysis of Irish third-level college applications data. J. R. Statist. Soc. A, 169, 361379.
  • Gormley, I. C. and Murphy, T. B. (2007) Discussion on ‘Estimating the integrated likelihood via posterior simulation using the harmonic mean identity’ (by A. E. Raftery, M. A. Newton, J. M. Satagopan and P. Krivitsiy). In Bayesian Statistics 8 (eds J. M.Bernardo, M. J.Bayarri, J. O.Berger, A. P.Dawid, D.Heckerman, A. F. M.Smith and M.West). Oxford: Oxford University Press.
  • Handcock, M. S. (2002) Statistical models for social networks: inference and degeneracy. In Dynamic Social Network Modelling and Analysis: Workshop Summary and Papers (eds R.Breiger, K.Carley and P. E.Pattison), pp. 229240. Washington DC: National Academy Press.
  • Handcock, M. S. (2003) Assessing degeneracy in statistical models of social networks. Working Paper 39. Center for Statistics and the Social Sciences, University of Washington, Seattle. (Available from http://www.csss.washington.edu/Papers/.)
  • Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. and Morris, M. (2003a) statnet: an R package for the statistical modeling of social networks. (Available from http://www.csde.washington.edu/statnet.)
  • Handcock, M. S., Hunter, D. R. and Tantrum, J. (2003b) Latent space models for social network in practice. Institute for Mathematics and Its Applications Wrkshp 3: Networks and the Population Dynamics of Disease Transmission , Minneapolis .
  • Handcock, M. S. and Jones, J. (2004) Likelihood-based inference for stochastic models of sexual network formation. Theoret. Popln Biol., 65, 413422.
  • Handcock, M. S. and Morris, M. (2007) A simple model for complex networks with arbitrary degree distribution and clustering. Lect. Notes Comput. Sci., to be published.
  • Handcock, M. S., Tantrum J., Shortreed, S. and Hoff, P. (2004) . (Available from http://www.csde.washington.edu/statnet/latentnet.)
  • Hennig, C. (2004) Breakdown points for maximum likelihood-estimators of location-scale mixtures. Ann. Statist., 32, 13131340.
  • Hoff, P. D. (2003) Random effects models for network data. In Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers (eds K. C. R.Breiger and P. Pattison), pp. 303312. Washington DC: National Academy Press.
  • Hoff, P. D. (2005) Bilinear mixed-effects models for dyadic data. J. Am. Statist. Ass., 100, 286295.
  • Hoff, P. D. (2007) Multiplicative latent factor models for description and prediction of social networks. Computnl Math. Organizn Theory, to be published.
  • Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002) Latent space approaches to social network analysis. J. Am. Statist. Ass., 97, 10901098.
  • Holland, P. W. and Leinhardt, S. (1970) A method for detecting structure in sociometric data. Am. J. Sociol., 70, 492513.
  • Holland, P. W. and Leinhardt, S. (1981) An exponential family of probability distributions for directed graphs (with discussion). J. Am. Statist. Ass., 76, 3365.
  • Hunter, D. R., Goodreau, S. M. and Handcock, M. S. (2007) Goodness of fit of social network models. J. Am. Statist. Ass., to be published.
  • Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks. J. Computnl Graph. Statist., 15, 565583.
  • Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991) Adaptive mixture of local experts. Neur. Computn, 3, 7987.
  • Kass, R. E. and Raftery, A. E. (1995) Bayes factors. J. Am. Statist. Ass., 90, 773795.
  • Kass, R. E. and Wasserman, L. A. (1995) A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Statist. Ass., 90, 928934.
  • Keribin, C. (2000) Consistent estimation of the order of mixture models. Sankhya A, 62, 4966.
  • Kim, H. and Mallick, B. K. (2002) Analyzing spatial data using skew-Gaussian processes. In Spatial Cluster Modelling (eds A. B.Lawson and D.Denision), ch 9. London: CRC.
  • Kossinets, G. and Watts, D. J. (2006) Empirical analysis of an evolving social network. Science, 311, 8890.
  • Krackhardt, D. (1988) Predicting with networks: a multiple regression approach to analyzing dyadic data. Socl Netwrks, 10, 359381.
  • Lazega, E. and Pattison, P. E. (1999) Multiplexity, generalized exchange and cooperation in organizations: a case study. Socl Netwrks, 21, 6790.
  • Lehmann, E. L. (1983) Theory of Point Estimation. New York: Wiley.
  • Leslie, D. S., Kohn, R. and Fiebig, D. G., (2006) Binary choice models with general distributional forms. To be published.
  • Little, R. J. A. and Rubin, D. B. (1983) On jointly estimating parameters and missing values by maximizing the complete data likelihood. Am. Statistn, 37, 218220.
  • Longford, N. T. and Pittau, M. G. (2006) Stability of household income in European countries in the 1990’s. Computnl Statist. Data Anal., 51, 13641383.
  • Luce, R. D. and Perry, A. (1949) A method of matrix analysis of group structure. Psychometrika, 51, 13641383.
  • MacKay, D. J. C. (1995) Bayesian neural networks and density networks. Instr. Meth. Phys. Res. A, 354, 7380.
  • Manton, K. G., Woodbury, M. A. and Tolley, D. H. (1994) Statistical Applications using Fuzzy Sets. New York: Wiley.
  • Marriott, F. H. C. (1975) Separating mixtures of normal distributions. Biometrics, 31, 767769.
  • Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M. and Alon, U. (2004) Superfamilies of evolved and designed networks. Science, 303, 15381542.
  • Murphy, T. B. and Martin, D. (2003) Mixtures of distance-based models for ranking data. Computnl Statist. Data Anal., 41, 645655.
  • Neal, R. M. (2000) Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist., 9, 249265.
  • Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev., 45, 167256.
  • Nowicki, K. and Snijders, T. A. B. (2001) Estimation and prediction for stochastic blockstructures. J. Am. Statist. Ass., 96, 10771087.
  • Oh, M. S. and Raftery, A. E. (2001) Bayesian multidimensional scaling and choice of dimension. J. Am. Statist. Ass., 96, 10311044.
  • Oh, M. S. and Raftery, A. E. (2003) Model-based clustering with dissimilarities: a Bayesian approach. Technical Report 441. Department of Statistics, University of Washington, Seattle.
  • Petrone, S. and Raftery, A. E. (1997) A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability. Statist. Probab. Lett., 36, 6983.
  • Quintana, F. A. and Iglesias, P. L. (2003) Bayesian clustering and product partition models. J. R. Statist. Soc. B, 65, 557574.
  • Raftery, A. E., Newton, M. A., Satagopan, J. M. and Krivitsiy, P. (2007) Estimating the integrated likelihood via posterior simulation using the harmonic mean identity (with discussion). In Bayesian Statistics 8 (eds J. M.Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West), pp. 145. Oxford: Oxford University Press.
  • Robins, G. L., Pattison, P. E., Kalish, Y. and Lusher, D. (2007a) An introduction to exponential random graph (p*) models for social networks. Socl Netwrks, to be published.
  • Robins, G. L., Snijders, T. A. B., Weng, P., Handcock, M. S. and Pattison, P. E. (2007b) Recent developments in exponential random graph (p*) models for social networks. Socl Netwrks, to be published.
  • Sasik, R., Hwa, T., Iranfar, N. and Loomis, W. F. (2001) Percolation clustering: a novel approach to the clustering of gene expression patterns in Dictyostelium development. In Proc. Pacific Symp. Biocomputing (eds R. B.Altman, A. K.Dunker, L.Hunter, K.Lauderdale and T. E.Klein), pp. 335347. Singapore: World Scientific Press.
  • Schweinberger, M. and Snijders, T. A. B. (2003) Settings in social networks: a measurement model. Sociol. Methodol., 33, 307341.
  • Sethuraman, J. (1994) A constructive definition of Dirichlet priors. Ann. Statist., 4, 639650.
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 24982504.
  • Shortreed, S., Handcock, M. S. and Hoff, P. (2006) Positional estimation within a latent space model for networks. Methodology, 2, 2433.
  • Simmel, G. (1955) Conflict and the Web of Group Affiliations. New York: Free Press.
  • Snijders, T. A. B. (2002) Markov Chain Monte Carlo estimation of exponential random graph models. J. Socl Struct., 3.
  • Snijders, T. A. B., Pattison, P. E., Robins, G. L. and Handcock, M. S. (2006) New specifications for exponential random graph models. Sociol. Methodol., 36, 99153.
  • Tobler, W. R. (1976) Spatial interaction patterns. J. Environ. Syst., 6, 271301.
  • Tobler, W. R. (2005) Using asymmetry to estimate potential. 25th Int. Sunbelt Social Network Conf., Redondo Beach.
  • Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S, 4th edn. New York: Springer.
  • Wang, X. F. and Chen, G. (2003) Complex networks: small-world, scale-free and beyond. IEEE Circ. Syst. Mag., 3, 620.
  • Wang, Y. J. and Wong, G. Y. (1987) Stochastic blockmodels for directed graphs. J. Am. Statist. Ass., 82, 819.
  • Watts, D. J., Dodds, P. S. and Newman, M. E. J. (2002) Identity and search in social networks. Science, 296, 13021305.
  • Westveld, A. and Hoff, P. D. (2005) Statistical methodology for longitudinal social network data. In Proc. A. Meet. American Political Science Association. American Political Science Association.
  • White, H. C., Boorman, S. A. and Breiger, R. L. (1976) Social structure from multiple networks: I, Blockmodels of roles and positions. Am. J. Sociol., 81, 730780.
  • Zadeh, L. (1965) Fuzzy sets. Inform. Control, 8, 338353.
  • Zijlstra, B. J. H., Van Duijn, M. A. J. and Snijders, T. A. B. (2005) Model selection in random effects models for directed graphs using approximated Bayesian factors. Statist. Neerland., 59, 107118.