SEARCH

SEARCH BY CITATION

References

  • Bajekal, M., Scholes, S., Pickering, K. and Purdon, S. (2004) Synthetic estimation of healthy lifestyles indicators: stage 1 report. Report. National Centre for Social Research, Colchester. (Available from http://www.natcen.ac.uk/smu_reports05/Synthetic_Estimation_Stage_1_Report.pdf.)
  • Branscum, A. J., Hanson, T. E. and Gardner, I. A. (2008) Bayesian non-parametric models for regional prevalence estimation. J. Appl. Statist., 35, 567582.
  • Eastern Region Public Health Observatory (2007a) A simple methodology for estimating smoking prevalence from CACI data. Eastern Region Public Health Observatory, Cambridge. (Available from http://www.erpho.org.uk/viewResource.aspx?id=16025.)
  • Eastern Region Public Health Observatory (2007b) Smoking in the East of England. Eastern Region Public Health Observatory. (Available from http://www.erpho.org.uk/viewResource.aspx?id=16022.)
  • Eberly, L. E. and Carlin, B. P. (2000) Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Statist. Med., 19, 22792294.
  • Elliott, M. R. and Davis, W. W. (2005) Obtaining cancer risk factor prevalence estimates in small areas: combining data from two surveys. Appl. Statist., 54, 595609.
  • Elliott, M. R. and Little, R. J. A. (2000) A Bayesian approach to combining information from a census, a coverage measurement survey, and demographic analysis. J. Am. Statist. Ass., 95, 351362.
  • Gelman, A. and Hill, J. (2007) Data Analysis using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.
  • Goddard, E. (2006) General Household Survey: smoking and drinking among adults, 2005, Table 1.12. Report. Office for National Statistics, London.
  • Hartley, H. O. (1974) Multiple frame methodology and selected applications. Sankhya C, 36, 99118.
  • Jackson, C., Best, N. and Richardson, S. (2008) Hierarchical related regression for combining aggregate and individual data in studies of socio-economic disease risk factors. J. R. Statist. Soc. A, 171, 159178.
  • Jones, A. M. and Tocque, K. (2005) Lifestyle Surveys: developing a local and regional picture. Synthesis, 4.
  • Kadane, J. B. (2001) Some statistical problems in merging data files. J. Off. Statist., 17, 423433.
  • Lohr, S. L. and Rao, J. N. K. (2000) Inference in dual frame surveys. J. Am. Statist. Ass., 95, 271280.
  • Lohr, S. and Rao, J. N. K. (2006) Estimation in multiple-frame surveys. J. Am. Statist. Ass., 101, 10191030.
  • Moriarity, C. and Scheuren, F. (2001) Statistical matching: a paradigm for assessing the uncertainty in the procedure. J. Off. Statist., 17, 407422.
  • Ng, E. S. W. (2005) A review of mixed-effects models in S-plus (version 6.2). Centre for Multilevel Modelling, University of Bristol, Bristol. (Available from http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewsplus.pdf.)
  • O'Malley, A. and Zaslavsky, A. M. (2005) Cluster-level covariance analysis for survey data with structured nonresponse. Technical Report. Department of Health Care Policy, Harvard Medical School, Boston.
  • Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS. New York: Springer.
  • Raghunathan, T. E., Xie, D., Schencker, N., Parsons, V. L., Davis, W. W., Dood, K. W. and Feuer, E. J. (2007) Combining information from two surveys to estimate county-level prevalence rates of cancer risk factors and screening. J. Am. Statist. Ass., 102, 474486.
  • R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Rodgers, W. E. (1984) An evaluation of statistical matching. J. Bus. Econ. Statist., 2, 91102.
  • Schenker, N. and Raghunathan, T. E. (2007) Combining information from multiple surveys to enhance estimation of measures of health. Statist. Med., 26, 18021811.
  • Scholes, S., Pickering, K. and Rayat, P. (2007) Healthy lifestyle behaviours: model based estimates for middle layer super output areas (MSOAs) and local authorities (LAs) in England 2003-2005: user guide. Information Centre and National Centre for Social Research, Colchester. (Available from http://www.ic.nhs.uk/statistics-and-data-collections/population-and-geography/neighbourhood-statistics/neighbourhood-statistics:-model-based-estimates-of-healthy-lifestyles-behaviours-2003-05.)
  • Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004) Bayesian Approaches to Clinical Trials and Health-care Evaluation. Chichester: Wiley.
  • Spiegelhalter, D. J. and Best, N. G. (2003) Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Statist. Med., 22, 36873709.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583639.
  • Spiegelhalter, D. J., Thomas, A., Best, N. and Lunn, D. (2007) WinBUGS Version 1.4.3 User Manual. Cambridge: Medical Research Council Biostatistics Unit. (Available from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.)
  • Thompson, S. G. and Sharp, S. J. (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Statist. Med., 18, 26932708.
  • Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2009) Bias modelling in evidence synthesis. J. R. Statist. Soc. A, 172, 2147.
  • Twigg, L., Moon, G. and Jones, K. (2000) Predicting small-area health-related behaviour: a comparison of smoking and drinking indicators. Socl Sci. Med., 50, 11091120.
  • Twigg, L., Moon, G. and Walker, S. (2004) The Smoking Epidemic in England. London: Health Development Agency. (Available from http://www.nice.org.uk/page.aspx?o=502811.)