SEARCH

SEARCH BY CITATION

References

References in the discussion

  • Albert, J. M. (2008) Mediation analysis via potential outcomes models. Statist. Med., 27, 12821304.
  • Albert, J. M. and Nelson, S. (2011) Generalized causal mediation analysis. Biometrics, 67, 10281038.
  • Baron, R. M. and Kenny, D. A. (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic and statistical considerations. J. Personlty Socl Psychol., 51, 11731182.
  • Bauer, P. and Kieser, M. (1999) Combining different phases in the development of medical treatments within a single trial. Statist. Med., 18, 18331848.
  • Cai, Z., Kuroki, M., Pearl, J. and Tian, J. (2008) Bounds on direct effects in the presence of confounded intermed iate variables. Biometrics, 64, 695701.
  • Chen, H., Geng, Z. and Jia, J. (2007) Criteria for surrogate end points. J. R. Statist. Soc. B, 69, 919932.
  • Clogg, C., Petkova, E. and Shihadeh, E. (1992) Statistical methods for analyzing collapsibility in regression models. J. Educ. Statist., 17, 5174.
  • Cole, S. R. and Frangakis, C. E. (2009) The consistency statement in causal inference: a definition or an assumption?Epidemiology, 20, 35.
  • Cook, T. D. and Campbell, D. T. (1979) Quasi-experimentation. Chicago: Rand-McNally.
  • Dawid, A. P. (2002) Influence diagrams for causal modelling and inference. Int. Statist. Rev., 70, 161189.
  • Dawid, A. P. (2003) Causal inference using influence diagrams: the problem of partial compliance. In Highly Structured Stochastic Systems(eds P. J. Green, N. L. Hjort and S. Richardson). New York: Oxford University Press.
  • Didelez, V., Dawid, A. P. and Geneletti, S. (2006) Direct and indirect effects of sequential decisions. In Proc. 22nd Conf. Association for Uncertainty in Artificial Intelligence (eds R. Dechter and T. Richardson), pp. 138146. Corvallis: Association for Uncertainty in Artificial Intelligence Press.
  • Emsley, R. A. and VanderWeele, T. J. (2012) Mediation and sensitivity analysis using two or more trials. Technical Report .
  • Fearon, J. D. and Laitin, D. D. (2003) Ethnicity insurgency, and civil war. Am. Polit. Sci. Rev., 97, 7590.
  • Frangakis, C. E. and Rubin, D. B. (1999) Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika, 86, 365379.
  • Frangakis, C. E. and Rubin, D. B. (2002) Principal stratification in causal inference. Biometrics, 58, 2129.
  • Frumento, P., Mealli, F., Pacini, B. and Rubin, D. (2012) Evaluating the effect of training on wages in the presence of noncompliance, nonemployment, and missing outcome data. J. Am. Statist. Ass., 107, 450466.
  • Geneletti, S. (2007) Identifying direct and indirect effects in a non-counterfactual framework. J. R. Statist. Soc. B, 69, 199215.
  • Greiner, D. J. and Rubin, D. B. (2011) Causal effects of perceived immutable characteristics. Rev. Econ. Statist., 93, 775785.
  • Holland, P. W. (1986) Statistics and causal inference (with discussion). J. Am. Statist. Ass., 81, 945960.
  • Hong, G. (2010) Ratio of mediator probability weighting for estimating natural direct and indirect effects. Proc. Biometr. Sect. Am. Statist. Ass., 24012415.
  • Hong, G., Deutsch, J. and Hill, H. D. (2011) Parametric and non-parametric weighting methods for estimating mediation effects: an application to the National Evaluation of Welfare-to-Work Strategies. Proc. Socl Statist. Sect. Am. Statist. Ass., 32153229.
  • Hoyle, R. H. and Kenny, D. A. (1999) Sample size, reliability, and tests of statistical mediation. In Statistical Strategies for Small Sample Research (ed. R. H. Hoyle), pp. 195222. Thousand Oaks: Sage.
  • Humphreys, M. (2005) Natural resources, conflict, and conflict resolution: uncovering the mechanisms. J. Conflct Resoln, 49, 508537.
  • Imai, K., Keele, L. and Tingley, D. (2010) A general approach to causal mediation analysis. Psychol. Meth., 15, 309334.
  • Imai, K., Keele, L., Tingley, D. and Yamamoto, T. (2011) Unpacking the black box of causality: learning about causal mechanisms from experimental and observational studies. Am. Polit. Sci. Rev., 105, 765789.
  • Imai, K., Keele, L. and Yamamoto, T. (2010) Identification, inference, and sensitivity analysis for causal mediation effects. Statist. Sci., 25, 5171.
  • Imai, K. and Yamamoto, T. (2012) Identification and sensitivity analysis for multiple causal mechanisms: revisiting evidence from framing experiments. Submitted to Polit. Anal. (Available from http://imai.princeton.edu/research/medsens.html.)
  • Jin, H. L. and Rubin. D. B. (2008) Principal stratification for causal inference with extended partial compliance. J. Am. Statist. Ass., 103, 101111.
  • Kaufman, S., Kaufman, J. S. and MacLehose, R. F. (2009) Analytic bounds on causal risk differences in directed acyclic graphs involving three observed binary variables. J. Statist. Planng Inf., 139, 34733487.
  • Leiva, V., Barros, M., Paula, G. A. and Galea, M. (2007) Influence diagnostics in log-Birnbaum-Saunders regression models with censored data. Comput. Statist. Data Anal., 51, 56945707.
  • Liu, Q., Proschan, M. A. and Pledger, G. W. (2002) A unified theory of two-stage adaptive designs. J. Am. Statist. Ass., 97, 10341041.
  • MacKinnon, D. P. (2008) Introduction to Statistical Mediation Analysis. New York: Erlbaum.
  • MacKinnon, D. P. and Pirlott, A. G. (2010) The unbearable lightness of b: approaches to improve causal interpretation of the M to Y relation. Society for Personality and Social Psychology Conf., Las Vegas .
  • Manski, C. F. (2007) Identification for Prediction and Decision. Cambridge: Harvard University Press.
  • Mark, M. M. (1986) Validity typologies and the logic and practice of quasi-experimentation. In Advances in Quasi-experimental Design and Analysis (ed. A. W. M. K. Trochim), pp. 4766. San Francisco: Jossey-Bass.
  • Mattei, A. and Mealli, F. (2011) Augmented designs to assess principal strata direct effects. J. R. Statist. Soc. B, 73, 729752.
  • Mealli, F. and Rubin, D. B. (2003) Assumptions allowing the estimation of direct causal effects. J. Econmetr., 112, 7987.
  • Nedelman, J. R., Rubin, D. B. and Sheiner, L. B. (2007) Diagnostics for confounding in PK/DD models for oxcarbazepine. Statist. Med., 26, 290308.
  • Neyman, J. (1990) Sur les applications de la théorie des probabilités aux experiences agricoles: essay des principes.. Statist. Sci., 5, 465472 (Engl. tránsl.).
  • Pearl, J. (2001) Direct and indirect effects. In Proc. 17th Conf. Uncertainty in Artificial Intelligence (eds J. S. Breese and D. Koller), pp. 411420. San Francisco: Morgan Kaufmann.
  • Ramsahai, R. R. (2007) Causal bounds and instruments. In Proc. 23rd A. Conf. Uncertainty in Artifical Intelligence, pp. 310317. Corvallis: Association for Uncertainty in Artificial Intelligence Press.
  • Ramsahai, R. R. (2012) Causal bounds and observable constraints for non-deterministic models. J. Mach. Learn. Res., 13, 829848.
  • Robins, J. (1986) A new approach to causal inference in mortality studies with sustained exposure periods—applications to control of the healthy worker survivor effect. Math. Modlng, 7, l3931512.
  • Robins, J. M. (2003) Semantics of causal DAG models and the identification of direct and indirect effects. In Highly Structured Stochastic Systems (eds P. J. Green, N. L. Hjort and S. Richardson), pp. 7081. Oxford: Oxford University Press.
  • Robins, J. M. and Richardson, T. S. (2010) Alternative graphical causal models and the identification of direct effects. In Causality and Psychopathology: Finding and Determinants of Disorders and Their Cures (eds P. Shrout, K. M. Keyes and K. Ornstein), pp. 103158. New York: Oxford University Press.
  • Robins, J. M. and Wasserman, L. (1997) Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proc. 13th Conf. Uncertainty in Artificial Intelligence (eds D. Geiger and P. Shenoy), pp. 409420. San Francisco: Morgan Kaufmann.
  • Rubin, D. B. (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol., 66, 688701.
  • Rubin, D. B. (1975) Bayesian inference for causality: the importance of randomization. Proc. Socl Statist. Sect. Am. Statist. Ass., 233239.
  • Rubin, D. B. (1977) Assignment to treatment group on the basis of a covariate. J. Educ. Statist., 2, 126; correction, 384.
  • Rubin, D. B. (1978) Bayesian inference for causal effects: the role of randomization. Ann. Statist., 6, 3458.
  • Rubin, D. B. (1980) Discussion of ‘‘Randomization analysis of experimental data in the Fisher randomization test’’ by Basu. J. Am. Statist. Ass., 75, 591593.
  • Rubin, D. B. (1986) Which ifs have causal answers?J. Am. Statist. Ass., 82, 961962.
  • Rubin, D. B. (2005) Causal inference using potential outcomes: design, modeling, decisions. J. Am. Statist. Ass., 100, 322331.
  • Rubin, D. B. (2010) Reflections stimulated by the comments of Shadish (2009) and West & Thoemmes (2009). Psychol. Meth., 15, 3846.
  • Shimizu, S. and Kano, Y. (2008) Use of non-normality in structural equation modeling: application to direction of causation. J. Statist. Planng Inf., 138, 34833491.
  • Sjölander, A. (2009) Bounds on natural direct effects in the presence of confounded intermediate variables. Statist. Med., 28, 558571.
  • Smith, E. R. (1982) Beliefs, attributions, and evaluations: nonhierarchical models of mediation in social cognition. J. Personlty Socl Psychol., 43, 248259.
  • Taguchi, G. (1987) System of Experimental Design:Engineering Methods to Optimize Quality and Minimize Costs (Engl. Transl.). New York: Quality Resources.
  • Tchetgen Tchetgen, E. J. and Shpitser, I. (2011) Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis. Working Paper 130. Harvard University School of Public Health, Cambridge. (Available from http://biostats.bepress.com/harvardbiostat/paper130.)
  • VanderWeele, T. J. (2008) Simple relations between principal stratification and direct and indirect effects. Statist. Probab. Lett., 78, 29572962.
  • VanderWeele, T. J. (2010) Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology, 21, 540551.
  • VanderWeele, T. J. (2012) Mediation analysis with multiple versions of the mediator. Epidemiology, 23, 454463.
  • VanderWeele, T. J. and Vansteelandt, S. (2009) Conceptual issues concerning mediation, interventions and composition. Statist. Interface—Special Issue on Mental Health and Social Behavioral Science, 2, 457468.
  • Wright, S. (1921) Correlation and causation. J. Agric. Res., 20, 557585.