SEARCH

SEARCH BY CITATION

References

  • Aït-Sahalia, Y. (1996) Testing continuous-time models of the spot interest rate. Rev. Finan. Stud., 9, 385426.
  • Aït-Sahalia, Y. (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica, 70, 223262.
  • Aït-Sahalia, Y. (2004) Closed-form likelihood expansions for multivariate diffusions. Working Paper. Princeton University, Princeton. (Available from http://www.princeton.edu/~yacine/research.htm.)
  • Asmussen, S., Glynn, P. and Pitman, J. (1995) Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Probab., 5, 875896.
  • Barndorff-Nielsen, O. E. and Shephard, N. (2002) Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Statist. Soc. B, 64, 253280.
  • Bertoin, J. and Pitman, J. (1994) Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math., 118, 147166.
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2004a) Retrospective exact simulation of diffusion sample paths with applications. To be published. (Available from http://www.maths.lancs.ac.uk/~papaspil/research.html.)
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2004b) Markov chain Monte Carlo for exact inference for discretely observed diffusions. To be published.
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005a) A new factorisation of diffusion measure with view towards simulation. To be published.
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005b) Monte carlo maximum likelihood estimation for discretely observed diffusion processes. To be published.
  • Beskos, A. and Roberts, G. O. (2005) Exact simulation of diffusions. Ann. Appl. Probab., 15, in the press.
  • Bibby, B. M., Jacobsen, M. and Sørensen, M. (2002) Estimating functions for discretely sampled diffusion-type models. In Handbook of Financial Econometrics (eds Y.Aït Sahalia and L. P.Hansen). Amsterdam: North-Holland.
  • Black, F. and Scholes, M. S. (1973) The pricing of options and corporate liabilities. J. Polit. Econ., 81, 637659.
  • Chan, K., Karolyi, A. G., Longstaff, F. A. and Sanders, A. B. (1992) An empirical comparison of alternative models of the short-term interest rate. J. Finan., 47, 12091227.
  • Chan, K. S. and Ledolter, J. (1995) Monte Carlo EM estimation for time series models involving counts. J. Am. Statist. Ass., 90, 242252.
  • Cox, J. C., Ingersoll, Jr, J. E. and Ross, S. A. (1985) A theory of the term structure of interest rates. Econometrica, 53, 385407.
  • Dacunha-Castelle, D. and Florens-Zmirou, D. (1986) Estimation of the coefficients of a diffusion from discrete observations. Stochastics, 19, 263284.
  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Statist. Soc. B, 39, 138.
  • Durham, G. B. and Gallant, A. R. (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes (with discussion). J. Bus. Econ. Statist., 20, 297338.
  • Elerian, O. (1999) Simulation estimation of continuous time series models with applications to finance. PhD Thesis. Nuffield College, Oxford.
  • Elerian, O., Chib, S. and Shephard, N. (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica, 69, 959993.
  • Eraker, B. (2001) MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Statist., 19, 177191.
  • Fort, G. and Moulines, E. (2003) Convergence of the Monte Carlo expectation maximization for curved exponential families. Ann. Statist., 31, 12201259.
  • Gallant, A. R. and Long, J. R. (1997) Estimating stochastic differential equations efficiently by minimum chi-squared. Biometrika, 84, 125141.
  • Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Computnl Phys., 22, 403434.
  • Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 23402361.
  • Gobet, E. (2002) LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab. Statist., 38, 711737.
  • Goel, N. S. and Richter-Dyn, N. (1974) Stochastic Models in Biology. New York: Academic Press.
  • Gourieroux, C. and Jasiak, J. (2003) Multivariate Jacobi process and smooth transitions with applications. J. Econ., to be published.
  • Gourieroux, C., Monfort, A. and Renault, E. (1993) Indirect inference. J. Appl. Econometr., 8, 85118.
  • Jamshidian, M. and Jennrich, R. I. (2000) Standard errors for EM estimation. J. R. Statist. Soc. B, 62, 257270.
  • Kessler, M. (1997) Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist., 24, 211229.
  • Kimura, M. and Ohta, T. (1971) Theoretical Aspects of Population Genetics. Princeton: Princeton University Press.
  • Kingman, J. F. C. (1993) Poisson Processes. Oxford: Clarendon.
  • Kloeden, P. and Platen, E. (1995) Numerical Solution of Stochastic Differential Equations. New York: Springer.
  • Louis, T. A. (1982) Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B, 44, 226233.
  • McAdams, H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natn. Acad. Sci. USA, 94, 814819.
  • Meng, X.-L. and Rubin, D. B. (1991) Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. J. Am. Statist. Ass., 86, 899909.
  • Merton, R. C. (1971) Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory, 3, 373413.
  • Obuhov, A. M. (1959) Description of turbulence in terms of Lagrangian variables. In Advances in Geophysics, vol. 6, pp. 113116. New York: Academic Press.
  • Papaspiliopoulos, O. and Roberts, G. O. (2004) Retrospective MCMC methods for Dirichlet process hierarchical models. To be published.
  • Papaspiliopoulos, O., Roberts, G. O. and Sköld, M. (2003) Non-centered parameterizations for hierarchical models and data augmentation (with discussion). In Bayesian Statistics 7 (eds J. M.Bernardo, M. S.Bayarri, J. O.Berger, A. P.Dawid, D.Heckerman, A. F. M.Smith and M.West), pp. 307326. New York: Oxford University Press.
  • Pardoux, É. and Pignol, M. (1984) Étude de la stabilité de la solution d'une EDS bilinéaire à coefficients périodiques: application au mouvement des pales d'hélicoptère. Lect. Notes Control Inform. Sci., 63, 92103.
  • Pedersen, A. R. (1995) Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli, 1, 257279.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) Numerical Recipes in C: the Art of Scientific Computing, 2nd edn. Cambridge: Cambridge University Press.
  • Revuz, D. and Yor, M. (1994) Continuous Martingales and Brownian Motion, 2nd edn. Berlin: Springer.
  • Roberts, G. O., Papaspiliopoulos, O. and Dellaportas, P. (2004) Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes. J. R. Statist. Soc. B, 66, 369393.
  • Roberts, G. O. and Stramer, O. (2001) On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika, 88, 603621.
  • Santa-Clara, P. (1995) Simulated likelihood estimation of diffusions with an application to the short-term interest rate. Working Paper . National Bureau of Economic Research, Cambridge.
  • Sherman, R. P., Ho, Y.-Y. K. and Dalal, S. R. (1999) Conditions for convergence of Monte Carlo EM sequences with an application to product diffusion modeling. Econ. J., 2, 248267.
  • Shiga, T. (1985) Mathematical results on the stepping stone model in population genetics. In Population Genetics and Molecular Evolution, pp. 267279. Tokyo: Japan Scientific Society Press.
  • Sørensen, H. (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey. Int. Statist. Rev., 72, 337354.
  • Wagner, W. (1988a) Unbiased multi-step estimators for the Monte Carlo evaluation of certain functional integrals. J. Computnl Phys., 79, 336352.
  • Wagner, W. (1988b) Monte Carlo evaluation of functionals of solutions of stochastic differential equations: variance reduction and numerical examples. Stochast. Anal. Appl., 6, 447468.
  • Wagner, W. (1989) Unbiased Monte Carlo estimators for functionals of weak solutions of stochastic differential equations. Stochast. Stochast. Rep., 28, 120.
  • Wei, G. C. G. and Tanner, M. A. (1990) A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Statist. Ass., 85, 699704.

References in the discussion

  • Aït-Sahalia, Y. (1996) Nonparametric pricing of interest rate derivative securities. Econometrica, 64, 527560.
  • Aït-Sahalia, Y. (2002a) Maximum likelihood estimation of discretely sampled diffusions: a closed form approximation approach. Econometrica, 70, 223262.
  • Aït-Sahalia, Y. (2002b) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes: comment. J. Bus. Econ. Statist., 20, 317321.
  • Aït-Sahalia, Y. (2004) Closed-form likelihood expansions for multivariate diffusions. Working Paper. Princeton University, Princeton. (Available from http://www.princeton.edu/~yacine/research.htm.)
  • Ball, F. G., Dryden, I. L. and Golalizadeh, M. (2004) Brownian motion and Ornstein-Uhlenbeck processes in planar shape space. Technical Report 04-11. Division of Statistics, University of Nottingham, Nottingham.
  • Bandi, F. M. and Phillips, P. C. B. (2003) Fully nonparametric estimation of scalar diffusion models. Econometrica, 71, 241283.
  • Bansal, R. and Zhou, H. (2002) Term structure of interest rates with regime shifts. J. Finan., 57, 19972042.
  • Barndorff-Nielsen, O. E. and Shephard, N. (2002) Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Statist. Soc. B, 64, 253280.
  • Basawa, I. V. and Rao, B. L. S. P. (1980) Statistical Inference for Stochastic Processes. New York: Academic Press.
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2004) Retrospective exact simulation of diffusion sample paths with applications. To be published. (Available from http://www.maths.lancs.ac.uk/~papaspil/research.html.)
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005a) A new factorisation of diffusion measure with view towards simulation. To be published.
  • Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005b) Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. To be published.
  • Beskos, A. and Roberts, G. O. (2005) Exact simulation of diffusions. Ann. Appl. Probab., 15, in the press.
  • Bingham, N. H. and Dunham, B. (1997) Estimating diffusion coefficients from count data. Ann. Inst. Statist. Math., 49, 667679.
  • Bingham, N. H., Kiesel, R. and Schmidt, R. (2003) A semi-parametric approach to risk management. Quant. Finan., 3, 426441.
  • Bingham, N. H. and Pitts, S. M. (1999) Non-parametric estimation for the M/G/infinity queue. Ann. Inst. Statist. Math., 51, 7197.
  • Chib, S., Pitt, M. K. and Shephard, N. (2004) Likelihood-based inference for diffusion models. Working Paper. Nuffield College, Oxford. (Available from http://www.nuff.ox.ac.uk/users/shephard/.)
  • Clifford, P. and Wei, G. (1993) The equivalence of the Cox process with squared radial Ornstein-Uhlenbeck intensity and the death process in a simple population model. Ann. Appl. Probab., 3, 314337.
  • Connor, S. B. and Kendall, W. S. (2006) Perfect simulation for a class of positive recurrent Markov chains. Submitted to Ann. Appl. Probab.
  • Dellaportas, P., Friel, N. and Roberts, G. O. (2004) Bayesian model selection for partially observed diffusion models. To be published.
  • Doss, H. (1977) Liens entre équations différentielles et ordinaires. Ann. Inst. H. Poincaré B, 13, 99125.
  • Douc, R., Guillin, A., Marin, J.-M. and Robert, C. P. (2005) Minimum variance importance sampling via Population Monte Carlo. Cahiers du Ceremade. Université Paris Dauphine, Paris.
  • Doucet, A., De Freitas, N. and Gordon, N. J. (eds) (2001) Sequential Monte Carlo Methods in Practice. New York: Springer.
  • Durham, G. B. and Gallant, A. R. (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes (with discussion). J. Bus. Econ. Statist., 20, 297338.
  • Elerian, O. S., Chib, S. and Shephard, N. (2001) Likelihood inference for discretely observed non-linear diffusions. Econometrica, 69, 959993.
  • Eraker, B. (2001) Markov chain Monte Carlo analysis of diffusion models with application to finance. J. Bus. Econ. Statist., 19, 177191.
  • Fan, J. and Zhang, C. (2003) A reexamination of diffusion estimators with applications to financial model validation. J. Am. Statist. Ass., 98, 118134.
  • Fearnhead, P., Papaspiliopoulos, O. and Roberts, G. O. (2005) Particle filters for partially observed diffusions. To be published.
  • Foss, S. G. and Tweedie, R. L. (1998) Perfect simulation and backward coupling. Stochast. Mod., 14, 187203.
  • Gelman, A. (1995) Methods of moments using monte-carlo simulation. J. Comput. Graph. Statist., 4, 3654.
  • Golightly, A. and Wilkinson, D. (2005) Bayesian sequential inference for nonlinear multivariate diffusions. Working Paper. University of Newcastle, Newcastle upon Tyne. (Available from http://www.staff.ncl.ac.uk/d.j.wilkinson/pub.html.)
  • Gordon, N., Salmond, D. and Smith, A. F. M. (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE. Proc. F, 140, 107113.
  • Guo, X. and Zhang, Q. (2004) Closed-form solutions for perpetual American put options with regime-switching. SIAM J. Appl. Math., 64, 20342049.
  • Hill, N. A. and Häder, D.-P. (1997) A biased random walk model for the trajectories of swimming micro-organisms. J. Theoret. Biol., 186, 503526.
  • Hürzeler, M. and Künsch, H. R. (1998) Monte Carlo approximations for general state space models. J. Comput. Graph. Statist., 7, 175193.
  • Ibragimov, I. A. and Rozanov, Y. A. (1978) Gaussian Random Processes. Berlin: Springer.
  • Jarner, S. F. and Roberts, G. O. (2002) Polynomial convergence rates of Markov chains. Ann. Appl. Probab., 12, 224247.
  • Jiang, G. J. and Knight, J. L. (1997) A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model. Econometr. Theory, 13, 615645.
  • Kalogeropoulos, K. (2006) Likelihood-based inference for a class of multivariate diffusions with unobserved paths. To be published.
  • Kalogeropoulos, K., Dellaportas, P. and Roberts, G. (2006a) Likelihood based inference for multidimensional diffusion models using data augmentation. Working Paper.
  • Kalogeropoulos, K., Roberts, G., and Dellaportas, P. (2006b) Bayesian inference on stochastic volatility diffusion models using time change transformations. Working Paper.
  • Karlin, S. and Taylor, H. M. (1981) A Second Course in Stochastic Processes. New York: Academic Press.
  • Kendall, D. G. (1984) Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc., 16, 81121.
  • Kendall, W. S. (1998) Perfect simulation for the area-interaction point process. In Probability Towards 2000 (eds L.Accardi and C.Heyde), pp. 218234. New York: Springer.
  • Kendall, W. S. (2004) Geometric ergodicity and perfect simulation. Electron. Communs Probab., 9, 140151.
  • Kent, J. T. (1975) Discussion on ‘Statistics of directional data’ (by K. V. Mardia). J. R. Statist. Soc. B, 37, 377378.
  • Kent, J. T. (1978) Time reversible diffusions. Adv. Appl. Probab., 10, 819835.
  • Kessler, M. and Paredes, S. (2002) Computational aspects related to martingale estimating functions for a discretely observed diffusion. Scand. J. Statist., 29, 425440.
  • Klüppelberg, C., Lindner, A. and Maller, R. (2004) A continuous time GARCH process driven by a Lévy process: stationarity and second order behaviour. J. Appl. Probab., 41, no. 3, 122.
  • Lo, A. W. (1988) Maximum likelihood estimation of generalized ito processes with discretely sampled data. Econometr. Theory, 4, 231247.
  • McCullagh, P. and Møller, J. (2005) The permanent process. Research Report R-2005-29. Department of Mathematical Sciences, Aalborg University, Aalborg.
  • Müller, G. (2005) MCMC estimation of the COGARCH(1,1) model. To be published.
  • Pavlopoulos, H. and Kedem, B. (1992) Stochastic modeling of rain rate processes: a diffusion model. Stochast. Mod., 8, 397420.
  • Pedersen, A. R. (1995) Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli, 1, 257279.
  • Propp, J. G. and Wilson, D. B. (1996) Exact sampling with coupled Markov chains and applications to statistical mechanics. Rand. Struct. Algrthms, 9, 223252.
  • Quintana, F. A., Liu, J. and Del Pino, G. (1999) Monte-Carlo EM with importance reweighting and its applications in random effects models. Comput. Statist. Data Anal., 29, 429444.
  • Roberts, G. O., Papaspiliopoulos, O. and Dellaportas, P. (2004) Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes. J. R. Statist. Soc. B, 66, 369393.
  • Roberts, G. and Stramer, O. (2001) On inference for partial observed non-linear diffusion models using the metropolis-hastings algorithm. Biometrika, 88, 603621.
  • Rogers, L. C. G. and Williams, D. (1994) Diffusions, Markov Processes and Martingales, vol. 1, Foundations, 2nd edn. New York: Wiley.
  • Srinivasan, S. K. (1988) Point Process Models of Cavity Radiation and Detection. London: Griffin.
  • Stanton, R. (1997) A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Finan., 52, 19732002.
  • Stramer, O. and Jun, Y. (2005a) Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes. To be published.
  • Stramer, O. and Jun, Y. (2005b) Parametric inference for partially observed diffusion processes: a comparison study. To be published.
  • Stroock, D. and Varadhan, S. R. S. (1979) Multidimensional Diffusions. New York: Springer.
  • Sussmann, H. J. (1978) On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab., 6, 1941.
  • Wu, S. and Zeng, Y. (2004) Affine regime-switching for interest rate term structure. In Mathematics of Finance (eds G.Yin and Q.Zhang), pp. 375386. Providence: American Mathematical Society.