• Bartholomew, D. J. (1957) A problem in life testing. J. Am. Statist. Ass., 52, 350355.
  • Berkson, J. and Gage, R. P. (1952) Survival curves for cancer patients following treatment. J. Am. Statist. Ass., 47, 501515.
  • Billingsley, P. (1999) Convergence of Probability Measures. New York: Wiley.
  • Boag, J. W. (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy (with discussion). J. R. Statist. Soc. B, 11, 1553.
  • Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. New York: Wiley.
  • Genest, C. and MacKay, R. J. (1986) Archimedean copulas and bivariate families with continuous marginals. Can. J. Statist., 14, 145159.
  • Hogan, J. and Laird, N. (1997) Model-based approach to analysing incomplete longitudinal and failure time data. Statist. Med., 16, 259272.
  • Kalbfleisch, J. D. and Prentice, R. L. (2002) The Statistical Analysis of Failure Time Data. New York: Wiley.
  • Klebanov, L. B. and Yakovlev, A. Y. (2005) A new approach to testing for sufficient follow up in cure-rate analysis. Technical Report. Department of Biostatistics and Computational Biology, University of Rochester, Rochester.
  • Kuk, A. Y. C. and Chen, C. (1992) A mixture model combining logistic regression with proportional hazards regression. Biometrika, 79, 531541.
  • Li, Y. and Feng, J. (2005) A nonparametric comparison of conditional distributions with non-negligible cure fractions. Liftime Data Anal., 11, 367387.
  • Li, Y., Tiwari, R. and Guha, S. (2006) Technical proofs for ‘‘Mixture cure survival models with dependent censoring’’. Technical Report . Harvard School of Public Health and Dana–Farber Cancer Institute, Boston.
  • Little, R. J. A. (1995) Modeling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90, 11121121.
  • Maller, R. A. and Zhou, S. (1992) Estimating the proportion of immunes in a censored sample. Biometrika, 79, 731739.
  • Maller, R. A. and Zhou, S. (1994) Testing for sufficient follow-up and outliers in survival data. J. Am. Statist. Ass., 89, 14991506.
  • Maller, R. A. and Zhou, S. (1996) Survival Analysis with Long-term Survivors. New York: Wiley.
  • Moeschberger, M. L. and Klein, J. P. (1995) Statistical methods for dependent competing risks. Liftime Data Anal., 1, 195204.
  • Peng, Y. and Dear, K. B. (2000) A nonparametric mixture model for cure rate estimation. Biometrics, 56, 237243.
  • Rivest, L. P. and Wells, M. T. (2001) A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. J. Multiv. Anal., 79, 138155.
  • Scharfstein, D. O. and Robins, J. M. (2002) Estimation of the failure time distribution in the presence of informative censoring. Biometrika, 89, 617634.
  • Scharfstein, D. O., Robins, J. M., Eddings, W. and Rotnitzky, A. (2001) Inference in randomized studies with informative censoring and discrete time-to-event endpoints. Biometrics, 57, 404413.
  • Siannis, F., Copas, J. and Lu, G. (2005) Sensitivity analysis for informative censoring in parametric survival models. Biostatistics, 6, 7791.
  • Sy, J. P. and Taylor, J. M. (2000) Estimation in a Cox proportional hazards cure model. Biometrics, 56, 227236.
  • Tsiatis, A. A. (1978) An example of nonidentifiability in competing risks. Scand. Act. J., 78, 235239.
  • Zheng, M. and Klein, J. P. (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika, 82, 127138.