SEARCH

SEARCH BY CITATION

References

  • Apte, A., Hairer, M., Stuart, A. M. and Voss, J. (2007) Sampling the posterior: an approach to non-gaussian data assymilation. Physica D, 230, 5064.
  • Arora, N. and Biegler, L. T. (2004) A trust region SQP algorithm for equality constrained parameter estimation with simple parametric bounds. Computnl Optimzn Appl., 28, 5186.
  • Bates, D. M. and Watts, D. B. (1988) Nonlinear Regression Analysis and Its Applications. New York: Wiley.
  • Bauer, I., Bock, H. G., Körkel, S. and Schlöder, J. P. (2000) Numerical methods for optimum experimental design in DAE systsems. J. Computnl Appl. Math., 120, 125.
  • Biegler, L., Damiano, J. J. and Blau, G. E. (1986) Nonlinear parameter estimation: a case study comparison. AIChE J., 32, 2945.
  • Biegler, L. and Grossman, I. (2004) Retrospective on optimization. Comput. Chem. Engng, 28, 11691192.
  • Bock, H. G. (1983) Recent advances in parameter identification techniques for ODE. In Numerical Treatment of Inverse Problems in Differential and Integral Equations (eds P.Deuflhard and E.Harrier), pp. 95121. Basel: Birkhäuser.
  • Campbell, D. (2007) Bayesian collocation tempering and generalized profiling for estimation of parameters from differential equation models. PhD Thesis. McGill University, Montreal.
  • Cao, J. and Ramsay, J. O. (2006) Parameter cascades and profiling in functional data analysis. Computnl Statist., to be published.
  • Cox, D. R. and Hinkley, D. V. (1974) Theoretical Statistics. London: Chapman and Hall.
  • Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (2003) System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Alg., 34, 283292.
  • Deuflhard, P. and Bornemann, F. (2000) Scientific Computing with Ordinary Differential Equations. New York: Springer.
  • Esposito, W. R. and Floudas, C. (2000) Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optimizn, 17, 97126.
  • FitzHugh, R. (1961) Impulses and physiological states in models of nerve membrane. Biophys. J., 1, 445466.
  • Friedman, J. and Silverman, B. W. (1989) Flexible parsimonious smoothing and additive modeling. Technometrics, 3, 321.
  • Gelman, A., Bois, F. Y. and Jiang, J. (1996) Physiological pharamacokinetic analysis using population modeling and informative prior distributions. J. Am. Statist. Ass., 91, 14001412.
  • Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 133, 444479.
  • Hooker, G. (2007) Theorems and calculations for smoothing-based profiled estimation of differential equations. Technical Report BU-1671-M. Department of Biostatistics and Computational Biology, Cornell University, Ithaca.
  • Jaeger, J., Blagov, M., Kosman, D., Kolsov, K., Manu, ???Myasnikova, E., Surkova, S., Vanario-Alonso, C., Samsonova, M., Sharp, D. and Reinitz, J. (2004) Dynamical analysis of regulatory interactions in the gap gene system of drosophila melanogaster. Genetics, no. 167, 17211737.
  • Koenker, R. and Mizera, I. (2002) Elastic and plastic splines: some experimental comparisons. In Statistical Data Analysis based on the L1-norm and Related Methods (ed. Y.Dodge), pp. 405414. Basel: Birkhäuser.
  • Marlin, T. E. (2000) Process Control. New York: McGraw-Hill.
  • Nagumo, J. S., Arimoto, S. and Yoshizawa, S. (1962) An active pulse transmission line simulating a nerve axon. Proc. Inst. Radio Engrs, 50, 20612070.
  • Poyton, A. A., Varziri, M. S., McAuley, K. B., McLellan, P. J. and Ramsay, J. O. (2006) Parameter estimation in continuous dynamic models using principal differential analysis. Computnl Chem. Engng, 30, 698708.
  • Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis. New York: Springer.
  • Seber, G. A. F. and Wild, C. J. (1989) Nonlinear Regression. New York: Wiley.
  • Tjoa, I.-B. and Biegler, L. (1991) Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Industrl Engng Chem. Res., 30, 376385.
  • Van Keilegom, I. and Carroll, R. J. (2006) Backfitting versus profiling in general criterion functions. Submitted to Statist. Sin.
  • Varah, J. M. (1982) A spline least squares method for numerical parameter estimation in differential equations. SIAM J. Scient. Comput., 3, 2846.
  • Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
  • Wilson, H. R. (1999) Spikes, Decisions and Actions: the Dynamical Foundations of Neuroscience. Oxford: Oxford University Press.
  • Zheng, W., McAuley, K., Marchildon, K. and Yao, K. Z. (2005) Effects of end-group balance on melt-phase nylon 612 polycondensation: experimental study and mathematical model. Industrl Engng Chem. Res., 44, 26752686.

References in the discussion

  • Anderson, R. M. and May R. M. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.
  • Anger, G. (1990) Inverse Problems in Differential Equations. Berlin: Kluwer.
  • Ascher, U. M. and Petzold, L. R. (1998) Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. Philadelphia: Society for Industrial and Applied Mathematics.
  • Aster, R. C., Borchers, B. and Thurber, C. H. (2005) Parameter Estimation and Inverse Problems. Boston: Elsevier.
  • Bauch, C. T. and Earn, D. J. D. (2003) Transients and attractors in epidemics. Proc. R. Soc. Lond. B, 270, 15731578.
  • Bayarri, M., Berger, J., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R., Paulo, R., Sacks, J. and Walsh, D. (2007) Computer model validation with functional output. Ann. Statist., to be published.
  • Berger, J. O., Liseo, B. and Wolpert, R. L. (1999) Integrated likelihood methods for eliminating nuisance parameters. Statist. Sci., 14, 128.
  • Bergstrom, A. R. (1966) Nonrecursive models as discrete approximations to systems of stochastic differential equations. Econometrica, 34, 173182.
  • Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Statist. Soc. B, 68, 333382.
  • Biegler, L. T., Ghattas, O., Heinkenschloss, M. and van Bloemen Waanders, B. (eds) (2003) Large-scale PDE-constrained optimization. Lect. Notes Computnl Sci. Engng, 30.
  • Bjornstad, O. N., Finkenstadt, B. F. and Grenfell, B. T. (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol. Monogr., 72, 169184.
  • Bock, H. G. (1983) Recent advances in parameter identification techniques for ODE. In Numerical Treatment of Inverse Problems in Differential and Integral Equations (eds P.Deuflhard and E.Harrier), pp. 95121. Basel: Birkhäuser.
  • Boker, S. M., Neale, M. C. and Rausch, J. (2004) Latent differential equation modeling with multivariate multi-occasion indicators. In Recent Developments on Structural Equation Models: Theory and Applications (eds K.van Montfort, H.Oud and A.Satorra), pp. 151174. Dordrecht: Kluwer.
  • Brown, E. N. (1987) Identification and estimation of differential equation models for circadian data. PhD Dissertation . Department of Statistics, Harvard University, Cambridge.
  • Brown, E. N., Choe, Y., Luithardt, H. and Czeisler, C. A. (2000) A statistical model of the human core-temperature circadian rhythm. Am. J. Physiol., 279, E669E683.
  • Campbell, D. (2007) Bayesian collocation tempering and generalized profiling for estimation of parameters from differential equation models. PhD Thesis . McGill University, Montreal.
  • Candès, E. J. and Tao, T. (2005) The Dantzig selector: statistical estimation when p is much larger than n. Technical Report . Caltech, Pasadena.
  • Casey, R. (2004) Periodic orbits in neural models: sensitivity analysis and algorithms for parameter estimation. PhD Thesis . Cornell University, Ithaca.
  • Chen, J. and Wu, H. (2007) Estimation of time-varying parameters in deterministic dynamic models with application to HIV infections. Statist. Sin., to be published.
  • Chorin, A. J. and Krause, P. (2004) Dimensional reduction for a Bayesian filter. Proc. Natn. Acad. Sci. USA, 101, 1501315017.
  • Coulson, T., Rohani, P. and Pascual, M. (2004) Skeletons, noise and population growth: the end of an old debate? Trends Ecol. Evoln, 19, 359364.
  • Cressie, N. A. C. (1991) Statistics for Spatial Data. New York: Wiley.
  • Czanner, G. (2004) Applications of statistics in neuroscience. PhD Dissertation . Department of Statistics, University of Pittsburgh, Pittsburgh.
  • Czanner, G., Iyengar, S., Zajtsev, A. and Krimer, L. (2007) Maximum likelihood estimation of state-space integrate-and-fire model of adapting neurons. Technical Report . Department of Statistics, University of Pittsburgh, Pittsburgh.
  • Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Rimmer, D. W., Ronda, J. M., Silva, E., Allan, J. S., Emens, J. S., Dijk, D. J. and Kronauer, R. E. (1999) Age-independent stability, precision, and near 24 hour period of the human circadian pacemaker. Science, 284, 21772181.
  • Czeisler, C. A., Kronauer, R. E., Allan, J. S., Duffy, J. F., Jewett, M. E., Brown, E. N. and Ronda, J. M. (1989) Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science, 244, 13281333.
  • Davidian, M. and Giltinan, D. M. (2003) Nonlinear models for repeated measurement data: an overview and update. J. Agric. Biol. Environ. Statist., 8, 387419.
  • Davies, P. L. and Kovac, A. (2001) Local extremes, runs, strings and multiresolution (with discussion). Ann. Statist., 29, 165.
  • Deuflhard, P. and Bornemann, F. (2000) Scientific Computing with Ordinary Differential Equations. New York: Springer.
  • Diks, C. (1999) Nonlinear Time-series Analysis: Methods and Applications. Singapore: World Scientific Publishing.
  • Dowd, M. (2006) A sequential Monte Carlo approach to marine ecological prediction. Environmetrics, 17, 435455.
  • Dowd, M. (2007) Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo. J. Mar. Syst., doi 10.1016/j.jmarsys.2007.01.007, to be published.
  • Durbin, J. and Koopman, S. J. (2001) Times Series Analysis by State-space Methods. New York: Oxford University Press.
  • Dushoff, J., Plotkin, J. B., Levin, S. A. and Earn, D. J. D. (2004) Dynamical resonance can account for seasonality of influenza epidemics. Proc. Natn. Acad. Sci. USA, 101, 1691516916.
  • Earn, D. J. D., Rohani, P., Bolker, B. M. and Grenfell, B. T. (2000) A simple model for complex dynamical transitions in epidemics. Science, 287, 667670.
  • Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T. and Nychka, D. W. (1998) Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling. Am. Naturlst, 151, 425440.
  • Ellner, S. P. and Guckenheimer, J. (2006) Dynamic Models in Biology. Princeton: Princeton University Press.
  • Ellner, S. P., Seifu, Y. and Smith, R. H. (2002) Fitting population dynamic models to time-series data by gradient matching. Ecology, 83, 22562270.
  • Englezos, P. and Kalogerakis, N. (2001) Applied Parameter Estimation for Chemical Engineers. New York: Dekker.
  • Evensen, G. (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn., 53, 343367.
  • Fahrmeir, L. and Tutz, G. (eds) (1994) Multivariate Statistical Modelling based on Generalized Linear Models. Berlin: Springer.
  • Fine, P. E. M. and Clarkson, J. A. (1982) Measles in England and Wales—I: an analysis of factors underlying seasonal patterns. Int. J. Epidem., 11, 514.
  • Finkenstädt, B. F. and Grenfell, B. T. (2000) Time series modelling of childhood diseases: a dynamical systems approach. Appl. Statist., 49, 187205.
  • Gelman, A., Bois, F. and Jiang, J. (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. Am. Statist. Ass., 91, 14001412.
  • Geyer, C. (1991) Markov chain monte carlo maximum likelihood. In Computing Science and Statistics: Proc. 23rd Symp. Interface (ed. E. M.Keramidas), pp. 156163. Fairfax Station: Interface Foundation.
  • Godsill, S. J., Doucet, A. and West, M. (2004) Monte Carlo smoothing for nonlinear time series. J. Am. Statist. Ass., 99, 156168.
  • Higdon, D., Gattiker, J. and Williams, B. (2007) Computer model calibration using high dimensional output. J. Am. Statist. Ass., to be published.
  • Hodgkin, A. and Huxley, A. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500544.
  • Hooker, G. (2007) Forcing function diagnostics for nonlinear dynamics. To be published.
  • Hotelling, H. (1927) Differential equations subject to error, and population estimates. J. Am. Statist. Ass., 22, 283314.
  • Huang, Y., Liu, D. and Wu, H. (2006) Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics, 62, 4l3423.
  • Huang, Y. and Wu, H. (2006) A Bayesian approach for estimating antiviral efficacy in HIV dynamic models. J. Appl. Statist., 33, 155174.
  • Ionides, E. L., Bretó, C. and King, A. A. (2006) Inference for nonlinear dynamical systems. Proc. Natn. Acad. Sci. USA, 103, 1843818443.
  • Itô, K. (1951) On stochastic differential equations. In American Mathematical Society Memoirs, no. 4. New York: American Mathematical Society.
  • Judd, K. (2007) Failure of maximum likelihood methods for chaotic dynamical systems. Phys. Rev. E, 75.
  • Judd, K. and Smith, L. A. (2004) Indistinguishable states II. Physica D, 196, 224242.
  • Judd, K., Smith, L. and Weisheimer, A. (2004) Gradient free descent: shadowing, and state estimation using limited derivative information. Physica D, 190, 153166.
  • Kalman, R. E. (1960) A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Engng, 82, 3545.
  • Kennedy, M. C. and O'Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist. Soc. B, 63, 425464.
  • Kitagawa, G. (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Computnl Graph. Statist., 5, 125.
  • Koch, C. (1999) Biophysics of Computation: Information Processing in Single Neurons. New York: Oxford University Press.
  • Künsch, H. R. (2005) Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Statist., 33, 19832021.
  • Kurtz, T. G. (1980) Relationships between stochastic and deterministic population models. Lect. Notes Biomath., 38, 449467.
  • Lande, R., Engen, S. and Saether, B. (2003) Stochastic Population Dynamics in Ecology and Conservation. Oxford: Oxford University Press.
  • Lawson, C. L. and Hanson, R. J. (1995) Solving Least Squares Problems. Philadelphia: Society for Industrial and Applied Mathematics.
  • Lele, S. R., Dennis, B. and Lutscher, F. (2007) Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov Chain Monte Carlo Methods. Ecol. Lett., 10, 551563.
  • Lewis, J. M., Lakshmivarahan, S. and Dhall, S. K. (2006) Dynamic Data Assimilation: a Least Squares Approach. Cambridge: Cambridge University Press.
  • Li, L., Brown, M. B., Lee, K. H. and Gupta, S. (2002) Estimation and inference for a spline-enhanced population pharmacokinetic model. Biometrics, 58, 601611.
  • Li, L., Lin, X., Brown, M., Gupta, S. and Lee, K. H. (2004) A population pharmacokinetic model with time-dependent covariates measured with errors. Biometrics, 60, 451460.
  • Li, Z., Osborne, M. and Prvan, T. (2005) Parameter estimation in ordinary differential equations. IMA J. Numer. Anal., 25, 264285.
  • Liu, Y. H. and Wang, X. J. (2001) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J. Computnl Neursci., 10, 2545.
  • London, W. and Yorke, J. A. (1973) Recurrent outbreaks of measles, chickenpox and mumps: i, seasonal variation in contact rates. Am. J. Epidem., 98, 453468.
  • McSharry, P. E. and Smith, L. A. (2004) Consistent Nonlinear Dynamics: identifying model inadequacy. Physica D, 192, 122.
  • Mendes, P., Moles, C. G. and Banga, J. R. (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 13, 24672474.
  • Mitchell, T., Morris, M. and Ylvisaker, D. (1994) Asymptotically optimum experimental designs for prediction of deterministic functions given derivative information. J. Statist. Planng. Inf., 41, 377389.
  • Molenaar, P. C. M. and Newell, K. M. (2003) Direct fit of a theoretical model of phase transition in oscillatory finger motions. Br. J. Math. Statist. Psychol., 56, 199214.
  • Mood, A. M. (1940) The distribution theory of runs. Ann. Math. Statist., 11, 367392.
  • Morris, M. D., Mitchell, T. J. and Ylvisaker, D. (1993) Bayesian design and analysis of computer experiments—use of derivatives in surface prediction. Technometrics, 35, 243255.
  • Nocedal, J. and Wright, S. (2006) Numerical Optimization, 2nd edn. New York: Springer.
  • O'Hagan, A. (1992) Some Bayesian numerical analysis. In Bayesian Statistics 4, pp. 345363. New York: Oxford University Press.
  • Pillai, G., Mentre, F. and Steimer, J. (2005) Non-linear mixed effects modeling—from methodology and software development driving implementation in drug development science. J. Pharmkin. Pharmdyn., 32, 161183.
  • Prinz, A., Bucher, D. and Marder, E. (2004) Similar network activity from disparate circuit parameters. Nat. Neursci., 7, 13451352.
  • Ramsay, J. O. (1998) Estimating smooth monotone functions. J. R. Statist. Soc. B, 60, 365375.
  • R Core Development Team (2006) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Robert, C. P. and Titterington, D. M. (1998) Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation. Statist. Comput., 8, 145158.
  • Ruppert, D., Wand, M. P. and Carroll, R. J. (2005) Semiparametric Regression. Cambridge: Cambridge University Press.
  • Särkkä, S. (2006) On sequential Monte Carlo sampling of discretely observed stochastic differential equations. In Proc. Nonlinear Statistical Signal Processing Wrkshp, Cambridge, Sept.
  • Schaffer, W. M. (1985) Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA J. Math. Appl. Med. Biol., 2, 221252.
  • Schwartz, I. B. and Smith, H. L. (1983) Infinite subharmonic bifurcation in an seir model. J. Math. Biol., 18, 233253.
  • Singer, H. (1993) Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. J. Time Ser. Anal., 14, 527545.
  • Smith, L. A. (2000) Disentangling uncertainty and error: on the predictability of nonlinear systems. In Nonlinear Dynamics and Statistics (ed. A. I.Mees), pp. 3164. Boston: Birkhäuser.
  • Solak, E., Murray-Smith, R., Leithead, W. and Leith, D. (2003) Derivative observations in gaussian process models of dynamic systems. In Advances in Neural Information Processing Systems, vol. 16. Cambridge: MIT Press.
  • Stengel, R. F. (1994) Optimal Control and Estimation. London: Dover Publications.
  • Tanartkit, P. and Biegler, L. T. (1995) Stable decomposition for dynamic optimization. Industrl Engng Chem. Res., 34, 1253.
  • Tanartkit, P. and Biegler, L. T. (1996) Reformulating ill-conditioned DAE optimization problems. Industrl Engng Chem. Res., 35, 1853.
  • Tarantola, A. (2005) Inverse Problem Theory. Philadelphia: Society for Industrial and Applied Mathematics.
  • Thompson, K. R., Dowd, M., Lu, Y. and Smith, B. (2000) Oceanographic data assimilation and regression analysis. Environmetrics, 11, 183196.
  • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267288.
  • Tien, J. H. (2007) Optimization for bursting neural models. PhD Thesis . Cornell University, Ithaca.
  • Tien, J. H. and Guckenheimer, J. (2007) Parameter estimation for bursting neural models. Submitted to J. Computnl Neursci.
  • Tjoa, I.-B. and Biegler, L. (1991) Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Industrl Engng Chem. Res., 30, 376385.
  • Turchin, P. (2003) Complex Population Dynamics: a Theoretical/Empirical Synthesis. Princeton: Princeton University Press.
  • de Valpine, P. (2004) Monte Carlo state space likelihoods by weighted posterior kernel density estimation. J. Am. Statist. Ass., 99, 523536.
  • Varah, J. M. (1982) A spline least squares method for numerical parameter estimation in differential equations. SIAM J. Scient. Computn, 3, 2846.
  • Wahba, G. (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. R. Statist. Soc. B, 40, 364372.
  • Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
  • Wahba, G. and Wang, Y. (1990) When is the optimal regularization parameter insensitive to the choice of the loss function? Communs Statist. Theory Meth., 19, 16851700.
  • Wallinga, J. and Teunis, P. (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidem., 160, 509516.
  • Wood, S. N. (2006) Generalized Additive Models: an Introduction with R. Boca Raton: Chapman and Hall–CRC.
  • Wu, H., Zhu, H., Miao, H. and Perelson, A. S. (2007) Parameter identifiability and estimation of hiv/aids dynamics models. To be published.
  • Zenker, S., Rubin, J. and Clermont, G. (2006) Towards a model-based medicine: integration of probabilistic inference with mechanistic knowledge. J. Crit. Care, 21, 350.
  • Zimmer, C. (2002) Life after chaos. Science, 284, 8386.