• Alexander, C. (2001) Orthogonal GARCH. In Mastering Risk, vol. 2, pp. 2138. London: Financial Times–Prentice Hall.
  • Arcones, M. A. and Yu, B. (1994) Central limit theorems for empirical processes and U-processes of stationary mixing sequences. J. Theoret. Probab., 7, 4771.
  • Back, A. and Weigend, A. S. (1997) A first application on independent component analysis to extracting structure from stock returns. Int. J. Neur. Syst., 8, 473484.
  • Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006) Multivariate GARCH models: a survey. J. Appl. Econometr., 21, 79109.
  • Bollerslev, T. (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev. Econ. Statist., 72, 498505.
  • Bollerslev, T. R., Engle, R. and Wooldridge, J. (1998) A capital asset pricing model with time varying covariances. J. Polit. Econ., 96, 116131.
  • Cheung, Y. W. and Ng, R. P. (1996) A causality in variance test and its application to financial market prices. J. Econometr., 72, 3348.
  • Chow, Y. S. and Teicher, H. (1997) Probability Theory, 3rd edn. New York: Springer.
  • Engle, R. (2002) Dynamic conditional correlation—a simple class of multivariate GARCH models. J. Bus. Econ. Statist., 20, 339350.
  • Engle, R. F. and Kroner, K. F. (1995) Multivariate simultaneous generalized ARCH. Econometr. Theory, 11, 122150.
  • Engle, R. F. and Sheppard, K. (2001) Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. Working Paper W8554. National Bureau of Economic Research, Cambridge. (Available from
  • Fan, J., Fan, Y. and Lv, J. (2007) Aggregation of nonparametric estimators for volatility matrix. J. Finan. Econ., 5, 321357.
  • Fan, J. and Yao, Q. (2003) Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer.
  • Granger, C. W. J., Robins, R. P. and Engle, R. F. (1984) Wholesale and retail prices: bivariate time series modeling with forecastable error variances. In Model Reliability (eds D.Belsley and E.Kuh). Cambridge: Massachusetts Institute of Technology Press.
  • Hafner, C. M. and Herwartz, H. (2000) Testing for linear autoregressive dynamics under heteroscedasticity. Econometr. J., 3, 177197.
    Direct Link:
  • Hafner, C. M. and Herwartz, H. (2006) A Lagrange multiplier test for causality in variance. Econ. Lett., 93, 137141.
  • Hall, P. and Yao, Q. (2003) Inference for ARCH and GARCH models. Econometrica, 71, 285317.
  • Harvey, A., Ruiz, E. and Shephard, N. (1994) Multivariate stochastic variance models. Rev. Econ. Stud., 61, 247264.
  • Hyvärinen, A., Karhunen, J. and Oja, E. (2001) Independent Component Analysis. New York: Wiley.
  • Jerez, M., Casals, J. and Sotoca, S. (2001) The likelihood of multivariate GARCH models is ill-conditioned. Technical Report . Universidad Complutense de Madrid, Madrid. (Available from
  • Kiviluoto, K. and Oja, E1998) Independent component analysis for parallel financial time series. In Proc. Int. Conf. Neural Information Processing, vol. 2, pp. 895989. Tokyo.
  • Ling, S. and McAleer, M. (2003) Adaptive estimation in non-stationary ARMA models with GARCH noises. Ann. Statist., 31, 642674.
  • Mălăroiu, S., Kiviluoto, K. and Oja, E. (2000) Time series prediction with independent component analysis. Technical Report . Helsinki University of Technology, Helsinki. (Available from
  • Mammen, E. (1993) Bootstrap and wild bootstrap for high dimensional linear models. Ann. Statist., 21, 255285.
  • McLeod, A. I. and Li, W. K. (1983) Diagnostic checking ARMA time series models using squared-residual autocorrelations. J. Time Ser. Anal., 4, 269273.
  • Pelletier, D. (2006) Regime switching for dynamic correlations. J. Econometr., 131, 445473.
  • Peng, L. and Yao, Q. (2003) Least absolute deviations estimation for ARCH and GARCH models. Biometrika, 90, 967975.
  • Polonik, W. (1997) Minimum volume sets and generalized quantile processes. Stoch. Processes Appl., 69, 124.
  • Reinsel, G. C. (1997) Elements of Multivariate Time Series Analysis, 2nd edn. New York: Springer.
  • Shephard, N. (1996) Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Econometrics, Finance and Other Fields (eds D. R.Cox, D. V.Hinkley and O. E.Barndorff-Nielsen), pp. 167. London: Chapman and Hall.
  • Straumann, D. (2005) Estimation in Conditional Heteroscedastic Time Series Models. Heidelberg: Springer.
  • Tiao, G. C. and Box, G. E. P. (1981) Modeling multiple time series with applications. J. Am. Statist. Ass., 76, 802816.
  • Tsay, R. (2002) Analysis of Financial Time Series. New York: Wiley.
  • Tse, Y. K. and Tsui, A. K. C. (1999) A note on diagnosing multivariate conditional heteroscedasticity models. J. Time Ser. Anal., 20, 679691.
    Direct Link:
  • Van Der Vaart, A. W. and Wellner, J. A. (1996) Weak Convergence and Empirical Processes. New York: Springer.
  • Vilenkin, N. (1968) Special Functions and the Theory of Group Representation. Providence: American Mathematical Society.
  • Wang, M. and Yao, Q. (2005) Modelling multivariate volatilities: an ad hoc approach. In Contemporary Multivariate Analysis and Experimental Designs (eds J.Fan, G.Li and R.Li). Singapore: World Scientific.
  • Van Der Weide, R. (2002) GO-GARCH: a multivariate generalized orthogonal GARCH model. J. Appl. Econometr., 17, 549564.
  • Wu, J. F. J. (1986) Jackknife, bootstrap and other resampling methods in regression analysis (with discussion). Ann. Statist., 14, 12611350.
  • Yu, B. (1994) Rates of convergence for empirical processes of stationary mixing sequences. Ann. Statist., 22, 94116.