SEARCH

SEARCH BY CITATION

References

  • Ainsworth, L. M. and Dean, C. B. (2006) Approximate inference for disease mapping. Computnl Statist. Data Anal., 50, 25522570.
  • Albert, J. H. and Chib, S. (1993) Bayesian analysis of binary and polychotomous response data. J. Am. Statist. Ass., 88, 669679.
  • Attias, H. (1999) Inferring parameters and structure of latent variable models by variational Bayes. In Proc. 15th Conf. Uncertainty in Artificial Intelligence, vol. 2, pp. 2130. San Francisco: Morgan Kaufmann.
  • Attias, H. (2000) A variational Bayesian framework for graphical models. Adv. Neur. Informn Process. Syst., 12, 209215.
  • Azzalini, A. and Capitanio, A. (1999) Statistical applications of the multivariate skew normal distribution. J. R. Statist. Soc. B, 61, 579602.
  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004) Hierarchical Modeling and Analysis for Spatial Data. London: Chapman and Hall.
  • Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008) Gaussian predictive process models for large spatial data sets. J. R. Statist. Soc. B, 70, 825848.
  • Beal, M. J. (2003) Variational algorithms for approximate Bayesian inference. PhD Thesis. University College London, London.
  • Besag, J., Green, P. J., Higdon, D. and Mengersen, K. (1995) Bayesian computation and stochastic systems (with discussion). Statist. Sci., 10, 366.
  • Besag, J., York, J. and Mollié, A. (1991) Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math., 43, 159.
  • Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Statist. Soc. B, 68, 333382.
  • Bishop, C. M. (2006) Pattern Recognition and Machine Learning. New York: Springer.
  • Box, G. E. P. and Wilson, K. B. (1951) On the experimental attainment of optimum conditions (with discussion). J. R. Statist. Soc. B, 13, 145.
  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 925.
  • Brix, A. and Diggle, P. J. (2001) Spatiotemporal prediction for log-Gaussian Cox processes. J. R. Statist. Soc. B, 63, 823841.
  • Brix, A. and Møller, J. (2001) Space-time multi type log Gaussian Cox processes with a view to modelling weeds. Scand. J. Statist., 28, 471488.
  • Carter, C. K. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541543.
  • Chib, S., Nardari, F. and Shephard, N. (2002) Markov chain Monte Carlo methods for stochastic volatility models. J. Econometr., 108, 281316.
  • Chu, W. and Ghahramani, Z. (2005) Gaussian processes for ordinal regression. J. Mach. Learn. Res., 6, 10191041.
  • Cressie, N. A. C. (1993) Statistics for Spatial Data, revised edn. New York: Wiley.
  • Cressie, N. and Johannesson, G. (2008) Fixed rank kriging for very large spatial data sets. J. R. Statist. Soc. B, 70, 209226.
  • Czado, C., Gneiting, T. and Held, L. (2007) Predictive model assessment for count data. Technical Report 518 . Department of Statistics, University of Washington, Seattle.
  • Dey, D. K., Ghosh, S. K. and Mallick, B. K. (eds) (2000) Generalized Linear Models: a Bayesian Perspective. Boca Raton: Chapman and Hall–CRC.
  • Diggle, P. J. and Ribeiro, P. J. (2006) Model-based Geostatistics. New York: Springer.
  • Durbin, J. and Koopman, S. J. (2000) Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion). J. R. Statist. Soc. B, 62, 356.
  • Eidsvik, J., Martino, S. and Rue, H. (2009) Approximate Bayesian inference in spatial generalized linear mixed models. Scand. J. Statist., to be published.
  • Fahrmeir, L. and Lang, S. (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Statist., 50, 201220.
  • Fahrmeir, L. and Tutz, G. (2001) Multivariate Statistical Modelling based on Generalized Linear Models, 2nd edn. Berlin: Springer.
  • Finkenstadt, B., Held, L. and Isham, V. (eds) (2006) Statistical Methods for Spatio-temporal Systems. Boca Raton: Chapman and Hall–CRC.
  • Friel, N. and Rue, H. (2007) Recursive computing and simulation-free inference for general factorizable models. Biometrika, 94, 661672.
  • Frühwirth-Schnatter, S. and Frühwirth, R. (2007) Auxiliary mixture sampling with applications to logistic models. Computnl Statist. Data Anal., 51, 35093528.
  • Frühwirth-Schnatter, S. and Wagner, H. (2006) Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling. Biometrika, 93, 827841.
  • Gamerman, D. (1997) Sampling from the posterior distribution in generalized linear mixed models. Statist. Comput., 7, 5768.
  • Gamerman, D. (1998) Markov chain Monte Carlo for dynamic generalised linear models. Biometrika, 85, 215227.
  • Gelfand, A. E. (1996) Model determination using sampling-based methods. In Markov Chain Monte Carlo in Practice (eds W. R.Gilks, S.Richardson and D. J.Spiegelhalter), pp. 145161. London: Chapman and Hall.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004) Bayesian Data Analysis, 2nd edn. Boca Raton: Chapman and Hall–CRC.
  • Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data. J. Am. Statist. Ass., 97, 590600.
  • Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation. J. Am. Statist. Ass., 102, 359378.
  • Gschløssl, S. and Czado, C. (2008) Modelling count data with overdispersion and spatial effects. Statist. Pap., 49, 531552.
  • Held, L., Natario, I., Fenton, S., Rue, H. and Becker, N. (2005) Towards joint disease mapping. Statist. Meth. Med. Res., 14, 6182.
  • Hinton, G. E. and Van Camp, D. (1993) Keeping the neural networks simple by minimizing the description length of the weights. In Proc. 6th A. Conf. Computational Learning Theory, Santa Cruz, pp. 513. New York: Association for Computing Machinery Press.
  • Holmes, C. C. and Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayes. Anal., 1, 145168.
  • Hsiao, C. K., Huang, S. Y. and Chang, C. W. (2004) Bayesian marginal inference via candidate's formula. Statist. Comput., 14, 5966.
  • Humphreys, K. and Titterington, D. M. (2000) Approximate Bayesian inference for simple mixtures. In Proc. Computational Statistics 2000 (eds J. G.Bethlehem and P. G. M.Van Der Heijden), pp. 331336. Heidelberg: Physica.
  • Jordan, M. I. (2004) Graphical models. Statist. Sci., 19, 140155.
  • Kammann, E. E. and Wand, M. P. (2003) Geoadditive models. Appl. Statist., 52, 118.
  • Kass, R. E., Tierney, L. and Kadane, J. B. (1999) The validity of posterior expansions based on Laplace's method. In Essays in Honor of George Bernard (eds S.Geisser, J. S.Hodges, S. J.Press and A.Zellner), pp. 473488. Amsterdam: North-Holland.
  • Kass, R. E. and Vaidyanathan, S. K. (1992) Approximate Bayes factors and orthogonal parameters, with application to testing equality of two binomial proportions. J. R. Statist. Soc. B, 54, 129144.
  • Kitagawa, G. and Gersch, W. (1996) Smoothness priors analysis of time series. Lect. Notes Statist., 116.
  • Knorr-Held, L. (1999) Conditional prior proposals in dynamic models. Scand. J. Statist., 26, 129144.
  • Knorr-Held, L., Raßer, G. and Becker, N. (2002) Disease mapping of stage-specific cancer incidence data. Biometrics, 58, 492501.
  • Knorr-Held, L. and Rue, H. (2002) On block updating in Markov random field models for disease mapping. Scand. J. Statist., 29, 597614.
  • Kohn, R. and Ansley, C. F. (1987) A new algorithm for spline smoothing based on smoothing a stochastic process. SIAM J. Scient. Statist. Comput., 8, 3348.
  • Kuss, M. and Rasmussen, C. E. (2005) Assessing approximate inference for binary Gaussian process classification. J. Mach. Learn. Res., 6, 16791704.
  • Lang, S. and Brezger, A. (2004) Bayesian P-splines. J. Computnl Graph. Statist., 13, 183212.
  • Mackay, D. J. C. (1995) Ensemble learning and evidence maximization. Technical Report . Cavendish Laboratory University of Cambridge, Cambridge.
  • Mackay, D. J. C. (1997) Ensemble learning for hidden Markov models. Technical Report . Cavendish Laboratory, University of Cambridge, Cambridge.
  • Marroquin, J. L., Velasco, F. A., Rivera, M. and Nakamura, M. (2001) Gauss-Markov measure field models for low-level vision. IEEE Trans. Pattn Anal. Mach. Intell., 23, 337348.
  • Martino, S. (2007) Approximate Bayesian inference for latent Gaussian models. PhD Thesis. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim.
  • Martino, S. and Rue, H. (2008) Implementing approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations: a manual for the inla-program. Technical Report 2 . Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim.
  • Minka, T. P. (2001) Expectation propagation for approximate Bayesian inference. Uncertnty Artif. Intell., 17, 362369.
  • Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998) Log Gaussian Cox processes. Scand. J. Statist., 25, 451482.
  • Møller, J. and Waagepetersen, R. (2003) Statistical Inference and Simulation for Spatial Point Processes. London: Chapman and Hall.
  • Neal, R. M. (1998) Regression and classification using Gaussian process priors. In Bayesian Statistics 6 (eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 475501. New York: Oxford University Press.
  • O'Hagan, A. (1978) Curve fitting and optimal design for prediction (with discussion). J. R. Statist. Soc. B, 40, 142.
  • Papaspiliopoulos, O., Roberts, G. O. and Sköld, M. (2007) A general framework for the parameterization of hierarchical models. Statist. Sci., 22, 5973.
  • Pettit, L. I. (1990) The conditional predictive ordinate for the normal distribution. J. R. Statist. Soc. B, 52, 175184.
  • Rasmussen, C. E. and Williams, C. K. I. (2006) Gaussian Processes for Machine Learning. Cambridge: MIT Press.
  • R Development Core Team (2007) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Rellier, G., Descombes, X., Zerubia, J. and Falzon, F. (2002) A Gauss-Markov model for hyperspectral texture analysis of urban areas. In Proc. 16th Int. Conf. Pattern Recognition, pp. 692695. Washington DC: Institute of Electrical and Electronics Engineers Computer Society.
  • Robert, C. P. and Casella, G. (1999) Monte Carlo Statistical Methods. New York: Springer.
  • Rue, H. (2001) Fast sampling of Gaussian Markov random fields. J. R. Statist. Soc. B, 63, 325338.
  • Rue, H. and Held, L. (2005) Gaussian Markov Random Fields: Theory and Applications. London: Chapman and Hall–CRC Press.
  • Rue, H. and Martino, S. (2007) Approximate Bayesian inference for hierarchical Gaussian Markov random fields models. J. Statist. Planng Inf., 137, 31773192.
  • Rue, H., Steinsland, I. and Erland, S. (2004) Approximating hidden Gaussian Markov random fields. J. R. Statist. Soc. B, 66, 877892.
  • Sanchez, S. M. and Sanchez, P. J. (2005) Very large fractional factorials and central composite designs. ACM Trans. Modlng Comput. Simuln, 15, 362377.
  • Schervish, M. J. (1995) Theory of Statistics, 2nd edn. New York: Springer.
  • Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115131.
  • Shephard, N. and Pitt, M. K. (1997) Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653667.
  • Shun, Z. and McCullagh, P. (1995) Laplace approximation of high dimensional integrals. J. R. Statist. Soc. B, 57, 749760.
  • Smith, A. F. M., Skene, A. M., Shaw, J. E. H. and Naylor, J. C. (1987) Progress with numerical and graphical methods for practical Bayesian statistics. Statistician, 36, 7582.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583639.
  • Terzopoulos, D. (1988) The computation of visible-surface representations. IEEE Trans. Pattn Anal. Mach. Intell., 10, 417438.
  • Thall, P. F. and Vail, S. C. (1990) Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657671.
  • Thomas, A., O'Hara, B., Ligges, U. and Sturtz, S. (2006) Making BUGS open. R News, 6, 1216.
  • Tierney, L. and Kadane, J. B. (1986) Accurate approximations for posterior moments and marginal densities. J. Am. Statist. Ass., 81, 8286.
  • Titterington, D. M. (2004) Bayesian methods for neural networks and related models. Statist. Sci., 19, 128139.
  • Waagepetersen, R. P. (2007) An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics, 63, 252258.
  • Wahba, G. (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. R. Statist. Soc. B, 40, 364372.
  • Wakefield, J. (2007) Disease mapping and spatial regression with count data. Biostatistics, 8, 158183.
  • Wakefield, J. C., Best, N. G. and Waller, L. A. (2000) Bayesian approaches to disease mapping. In Spatial Epidemiology: Methods and Applications (eds P.Elliot, J. C.Wakefield, N. G.Best and D. J.Briggs), pp. 104107. Oxford: Oxford University Press.
  • Wang, B. and Titterington, D. M. (2005) Inadequacy of interval estimates corresponding to variational Bayesian approximations. In Proc. 10th Int. Wrkshp Artificial Intelligence and Statistics (eds R. G.Cowell and Z.Ghahramani), pp. 373380. Society for Artificial Intelligence and Statistics.
  • Wang, B. and Titterington, D. M. (2006) Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayes. Anal., 1, 625650.
  • Wecker, W. E. and Ansley, C. F. (1983) The signal extraction approach to nonlinear regression and spline smoothing. J. Am. Statist. Ass., 78, 8189.
  • Weir, I. S. and Pettitt, A. N. (2000) Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data. Appl. Statist., 49, 473484.
  • West, M. and Harrison, J. (1997) Bayesian Forecasting and Dynamic Models, 2nd edn. New York: Springer.
  • Williams, C. K. I. and Barber, D. (1998) Bayesian classification with Gaussian processes. IEEE Trans. Pattn Anal. Mach. Intell., 20, 13421351.
  • Zoeter, O. and Heskes, T. (2005) Gaussian quadrature based expectation propagation. In Proc. 10th Int. Wrkshp Artificial Intelligence and Statistics (eds R. G.Cowell and Z.Ghahramani), pp. 445452. Society for Artificial Intelligence and Statistics.