SEARCH

SEARCH BY CITATION

References

  • Abramovich, F., Benjamini, Y., Donoho, D. L. and Johnstone, I. M. (2006) Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist., 34, 584653.
  • D'Aspremont, A., Ghaoui, L. E., Jordan, M. I. and Lanckriet, G. R. G. (2007) A direct formulation for sparse pca using semidefinite programming. SIAM Rev., 49, 434448.
  • Bair, E., Hastie, T., Paul, D. and Tibshirani, R. (2006) Prediction by supervised principal components. J. Am. Statist. Ass., 101, 119137.
  • Bendel, R. B. and Afifi, A. A. (1976) A criterion for stepwise regression. Am. Statistn, 30, 8587.
  • Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289300.
  • Boulesteix, A.-L and Strimmer, K. (2005) Predicting transcription factor activities from combined analysis of microarray and chip data: a partial least squares approach. Theor. Biol. Med. Modllng, 2.
  • Boulesteix, A.-L. and Strimmer, K. (2006) Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform., 7, 3244.
  • Ter Braak, C. J. F. and De Jong, S. (1998) The objective function of partial least squares regression. J. Chemometr., 12, 4154.
  • Butler, N. A. and Denham, M. C. (2000) The peculiar shrinkage properties of partial least squares regression. J. R. Statist. Soc B, 62, 585593.
  • Chun, H. and Keleş, S. (2009) Expression quantitative loci mapping with multivariate sparse partial least squares. Genetics, 182, 7990.
  • Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression. Ann. Statist., 32, 407499.
  • Frank, I. E. and Friedman, J. H. (1993) A statistical view of some chemometrics regression tools. Technometrics, 35, 109135.
  • Friedman, J. H. and Popescu, B. E. (2004) Gradient directed regularization for linear regression and classification. Technical Report . Department of Statistics, Stanford University, Stanford.
  • Geman, S. (1980) A limit theorem for the norm of random matrices. Ann. Probab., 8, 252261.
  • Golub, G. H. and Van Loan, C. F. (1987) Matrix Computations. Baltimore: Johns Hopkins University Press.
  • Goutis, C. (1996) Partial least squares algorithm yields shrinkage estimators. Ann. Statist., 24, 816824.
  • Hastie, T., Tibshirani, R., Eisen, M., Alizadeh, A., Levy, R., Staudt, L., Botstein, D. and Brown, P. (2000) Identifying distinct sets of genes with similar expression patterns via ‘‘gene shaving’’. Genome Biol., 1, 121.
  • Helland, I. S. (1990) Partial least squares regression and statistical models. Scand. J. Statist., 17, 97114.
  • Helland, I. S. (2000) Model reduction for prediction in regression models. Scand. J. Statist., 27, 120.
  • Helland, I. S. and Almoy, T. (1994) Comparison of prediction methods when only a few components are relevant. J. Am. Statist. Ass., 89, 583591.
  • Huang, X., Pan, W., Park, S., Han, X., Miller, L. W. and Hall, J. (2004) Modeling the relationship between lvad support time and gene expression changes in the human heart by penalized partial least squares. Bioinformatics, 20, 888894.
  • Johnstone, I. M. and Lu, A. Y. (2004) Sparse principal component analysis. Technical Report. Department of Statistics, Stanford University, Stanford.
  • Jolliffe, I. T., Trendafilov, N. T. and Uddin, M. (2003) A modified principal component technique based on the lasso. J. Computnl Graph. Statist., 12, 531547.
  • De Jong, S. (1993) SIMPLS: an alternative approach to partial least squares regression. Chemometr. Intell. Lab. Syst., 18, 251263.
  • Kosorok, M. R. and Ma, S. (2007) Marginal asymptotics for the ‘‘large p, small n’’ paradigm: with applications to microarray data. Ann. Statist., 35, 14561486.
  • Krämer, N. (2007) An overview on the shrinkage properties of partial least squares regression. Computnl Statist., 22, 249273.
  • Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thomson, C. M., Simon, I., Zeitlinger, J., Jennings, E. G., Murray, H. L., Gordon, D. B., Ren, B., Wyrick, J. J., Tagne, J.-B., Volkert, T. L., Fraenkel, E., Gifford, D. K. and Young, R. A. (2002) Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298, 799804.
  • Nadler, B. and Coifman, R. R. (2005) The prediction error in cls and pls: the importance of feature selection prior to multivariate calibration. J. Chemometr., 19, 107118.
  • Naik, P. and Tsai, C.-L. (2000) Partial least squares estimator for single-index models. J. R. Statist. Soc. B, 62, 763771.
  • Pratt, J. W. (1960) On interchanging limits and integrals. Ann. Math. Statist., 31, 7477.
  • Rosipal, R. and Krämer, N. (2006) Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection Techniques(eds C.Saunders, M.Grobelnik, S.Gunn and J.Shawe-Taylor), pp. 3451. New York: Springer.
  • Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molec. Biol. Cell, 9, 32733279.
  • Stoica, P. and Soderstorom, T. (1998) Partial least squares: a first-order analysis. Scand. J. Statist., 25, 1724.
  • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267288.
  • Wang, L., Chen, G. and Li, H. (2007) Group scad regression analysis for microarray time course gene expression data. Bioinformatics, 23, 14861494.
  • Wold, H. (1966) Estimation of Principal Components and Related Models by Iterative Least Squares. New York: Academic Press.
  • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301320.
  • Zou, H., Hastie, T. and Tibshirani, R. (2006) Sparse principal component analysis. J. Computnl Graph. Statist., 15, 265286.