SEARCH

SEARCH BY CITATION

References

  • Andrieu, C., Berthelesen, K., Doucet, A. and Roberts, G. O. (2007) The expected auxiliary variable method for Monte Carlo simulation. Working Paper . Department of Mathematics, University of Bristol, Bristol.
  • Andrieu, C., De Freitas, J. F. G. and Doucet, A. (1999) Sequential Markov chain Monte Carlo for Bayesian model selection. In Proc. Wrkshp Higher Order Statistics, Caesarea, pp. 130134. New York: Institute of Electrical and Electronics Engineers.
  • Andrieu, C. and Roberts, G. O. (2009) The pseudo-marginal approach for efficient computation. Ann. Statist., 37, 697725.
  • Andrieu, C. and Thoms, J. (2008) A tutorial on adaptive MCMC. Statist. Comput., 18, 343373.
  • Barndorff-Nielsen, O. E. and Shephard, N. (2001a) Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics (with discussion). J. R. Statist. Soc. B, 63, 167241.
  • Barndorff-Nielsen, O. E. and Shephard, N. (2001b) Normal modified stable processes. Theor. Probab. Math. Statist., 65, 119.
  • Beaumont, M. A. (2003) Estimation of population growth or decline in genetically monitored populations. Genetics, 164, 11391160.
  • Belmonte, M. A. G., Papaspiliopoulos, O. and Pitt, M. K. (2008) Particle filter estimation of duration-type models. Technical Report. Department of Statistics, Warwick University, Coventry.
  • Cappé, O., Moulines, E. and Rydén, T. (2005) Inference in Hidden Markov Models. New York: Springer.
  • Carpenter, J., Clifford, P. and Fearnhead, P. (1999) An improved particle filter for non-linear problems. IEE Proc. F, 46, 27.
  • Carter, C. K. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541553.
  • Cérou, F., Del Moral, P. and Guyader, A. (2008) A non asymptotic variance theorem for unnormalized Feynman-Kac particle models. Technical Report RR-6716 .Institut National de Recherche en Informatique et Automatique Bordeaux Sud-Ouest, Talence.
  • Chopin, N. (2002) A sequential particle filter method for static models. Biometrika, 89, 539552.
  • Combe, N., Vlugt, T. J. H., Wolde, P. R. and Frenkel, D. (2003) Dynamic pruned-enriched Rosenbluth method. Molec. Phys., 101, 16751682.
  • Creal, D. D. (2008) Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models. Computnl Statist. Data Anal., 52, 28632876.
  • Del Moral, P. (2004) Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. New York: Springer.
  • Del Moral, P., Doucet, A. and Jasra, A. (2006) Sequential Monte Carlo samplers. J. R. Statist. Soc. B, 68, 411436.
  • Doucet, A., De Freitas, J. F. G. and Gordon, N. J. (eds) (2001) Sequential Monte Carlo Methods in Practice. New York: Springer.
  • Doucet, A. and Johansen, A. M. (2009) A tutorial on particle filtering and smoothing: fifteen years later. In Handbook of Nonlinear Filtering (eds D.Crisan and B.Rozovsky). Cambridge: Cambridge University Press.
  • Fearnhead, P. (2002) MCMC, sufficient statistics and particle filters. J. Computnl Graph. Statist., 11, 848862.
  • Fernandez-Villaverde, J. and Rubio-Ramirez, J. F. (2007) Estimating macroeconomic models: a likelihood approach. Rev. Econ. Stud., 74, 10591087.
    Direct Link:
  • Flury, T. and Shephard, N. (2010) Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econometr. Theor., to be published.
  • Frenkel, D. (2006) Waste-recycling Monte Carlo. Lect. Notes Phys., 703, 127138.
  • Frühwirth-Schnatter, S. (1994) Data augmentation and dynamic linear models. J. Time Ser. Anal., 15, 183202.
  • Frühwirth-Schnatter, S. and Sögner, L. (2008) Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law. Ann. Inst. Statist. Math., 61, 159179.
  • Gander, M. P. S. and Stephens, D. A. (2007) Stochastic volatility modelling in continuous time with general marginal distributions: inference, prediction and model selection. J. Statist. Planng Inf., 137, 30683081.
  • Gilks, W. R. and Berzuini, C. (2001) Following a moving target—Monte Carlo inference for dynamic Bayesian models. J. R. Statist. Soc. B, 63, 127146.
  • Gordon, N. J., Salmond, D. and Smith, A. F. M. (1993) Novel approach to nonlinear non-Gaussian Bayesian state estimation. IEE Proc. F, 40, 107113.
  • Kitagawa, G. (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Computnl Graph. Statist., 5, 125.
  • Ionides, E. L., Breto, C. and King, A. A. (2006) Inference for nonlinear dynamical systems. Proc. Natn. Acad. Sci. USA, 103, 1843818443.
  • Liu, J. S. (2001) Monte Carlo Strategies in Scientific Computing. New York: Springer.
  • Liu, J. S., Liang, F. and Wong, W. H. (2000) The use of multiple-try method and local optimization in Metropolis sampling. J. Am. Statist. Ass., 95, 121134.
  • Mengersen, K. L. and Tweedie, R. (1996) Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist., 24, 101121.
  • Møller, J., Pettitt, A. N., Berthelsen, K. K. and Reeves, R. W. (2006) An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika, 93, 451458.
  • Pitt, M. K. and Shephard, N. (1999) Filtering via simulation: auxiliary particle filter. J. Am. Statist. Ass., 94, 590599.
  • Roberts, G. O., Papaspiliopoulos, O. and Dellaportas, P. (2004) Bayesian inference for non-Gaussian Ornstein–Unhlenbeck stochastic volatility processes. J. R. Statist. Soc. B, 66, 369393.
  • Shephard N. and Pitt M. K. (1997) Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653667.
  • Siepmann, J. I. and Frenkel, D. (1992) Configurational-bias Monte Carlo: a new sampling scheme for flexible chains. Molec. Phys., 75, 5970.
  • Storvik, G. (2002) Particle filters in state space models with the presence of unknown static parameters. IEEE Trans. Signal Process., 50, 281289.