SEARCH

SEARCH BY CITATION

References

  • Abramson, I. (1982) On variable bandwidth in kernel estimates—a square root law. Ann. Statist., 10, 12171223.
  • An, M. Y. (1998) Logconcavity versus logconvexity: a complete characterization. J. Econ. Theor., 80, 350369.
  • Asuncion, A. and Newman, D. J. (2007) UCI Machine Learning Repository. University of California, Irvine. (Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.)
  • Bagnoli, M. and Bergstrom, T. (2005) Log-concave probability and its applications. Econ. Theor., 26, 445469.
  • Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009) Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., 37, 12991331.
  • Barber, C. B., Dobkin, D. P. and Huhdanpaa, H. (1996) The Quickhull algorithm for convex hulls. ACM Trans. Math. Softwr., 22, 469483.
  • Barndorff-Nielsen, O. (1978) Information and Exponential Families in Statistical Theory. New York: Wiley.
  • Boyd, S. and Vandenberghe, L. (2004) Convex Optimization. Cambridge: Cambridge University Press.
  • Bozdogan, H. (1994) Choosing the number of clusters, subset selection of variables, and outlier detection on the standard mixture-model cluster analysis. In New Approaches in Classification and Data Analysis (eds E.Diday, Y.Lechevallier, M.Schader, P.Bertrand and B.Burtschy), pp. 169177. New York: Springer.
  • Breiman, L., Meisel, W. and Purcell, E. (1977) Variable kernel estimates of multivariate densities. Technometrics, 19, 135144.
  • Brooks, S. P. (1998) MCMC convergence diagnosis via multivariate bounds on log-concave densities. Ann. Statist., 26, 398433.
  • Caplin, A. and Nalebuff, B. (1991a) Aggregation and social choice: a mean voter theorem. Econometrica, 59, 123.
  • Caplin, A. and Nalebuff, B. (1991b) Aggregation and imperfect competition: on the existence of equilibrium. Econometrica, 59, 2559.
  • Chacón, J. E. (2009) Data-driven choice of the smoothing parametrization for kernel density estimators. Can. J. Statist., 34, 249265.
  • Chacón, J. E., Duong, T. and Wand, M. P. (2010) Asymptotics for general multivariate kernel density derivative estimators. Statist. Sin.,to be published.
  • Chang, G. and Walther, G. (2007) Clustering with mixtures of log-concave distributions. Computnl Statist. Data Anal., 51, 62426251.
  • Chiu, S.-T. (1992) An automatic bandwidth selector for kernel density estimation. Biometrika, 79, 771782.
  • Cule, M. L. (2009) Maximum likelihood estimation of a multivariate log-concave density. PhD Thesis. University of Cambridge, Cambridge.
  • Cule, M. L. and Dümbgen, L. (2008) On an auxiliary function for log-density estimation. Technical Report 71. Universität Bern, Bern.
  • Cule, M. L., Gramacy, R. B. and Samworth, R. J. (2007) LogConcDEAD: Maximum Likelihood Estimation of a Log-Concave Density. Statistical Laboratory, Cambridge. (Available from http://CRAN.R-project.org/package=LogConcDEAD.)
  • Cule, M. L., Gramacy, R. B. and Samworth, R. J. (2009) LogConcDEAD: an R package for maximum likelihood estimation of a multivariate log-concave density. J. Statist. Softwr., 29, issue 2.
  • Cule, M. L. and Samworth, R. J. (2010), Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Statist., 4, 254270.
  • Cule, M. L., Samworth, R. J. and Stewart, M. I. (2010) Maximum likelihood estimation of a multidimensional log-concave density (long version). Statistical Laboratory, Cambridge. (Available from http://www.statslab.cam.ac.uk/~rjs57/Research.html.)
  • Ćwik, J. and Koronacki, J. (1997) Multivariate density estimation: a comparative study. Neur. Computn Appl., 6, 173185.
  • Deheuvels, P. (1977) Estimation non parametrique de la densité par histogrammes generalisés II. Publ. Inst. Statist. Univ. Paris, 22, 123.
  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Statist. Soc. B, 39, 138.
  • Devroye, L., Györfi, L. and Lugosi, G. (1996) A Probabilistic Theory of Pattern Recognition. New York: Springer.
  • Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996) Density estimation by wavelet thresholding. Ann. Statist., 24, 508539.
  • Dümbgen, L., Hüsler, A. and Rufibach, K. (2007) Active set and EM algorithms for log-concave densities based on complete and censored data. Technical Report 61. Universität Bern, Bern. (Available from http://arxiv.org/abs/0707.4643/.)
  • Dümbgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15, 4068.
  • Dümbgen, L., Samworth, R. J. and Schuhmacher, D. (2010) Approximation by log-concave distributions with applications to regression. Technical Report 75. Universität Bern, Bern. (Available from http://arxiv.org/abs/1002.3448/.)
  • Duong, T. (2004) Bandwidth selectors for multivariate kernel density estimation. PhD Thesis. University of Western Australia, Perth.
  • Duong, T. and Hazelton, M. L. (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparam. Statist., 15, 1730.
  • Duong, T. and Hazelton, M. L. (2005) Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation. J. Multiv. Anal., 93, 417433.
  • Eggermont, P. P. B. and LaRiccia, V. (2001) Maximum Penalized Likelihood Estimation, vol. 1, Density Estimation. New York: Springer.
  • Eubank, R. L. (1988) Spline Smoothing and Nonparametric Regression. New York: Dekker.
  • Fix, E. and Hodges, J. L. (1951) Discriminatory analysis—nonparametric discrimination: consistency properties. Technical Report 4, project 21-29-004. US Air Force School of Aviation Medicine, Randolph Field.
  • Fix, E. and Hodges, J. L. (1989) Discriminatory analysis—nonparametric discrimination: consistency properties. Int. Statist. Rev., 57, 238247.
  • Fraley, C. F. and Raftery, A. E. (2002) Model-based clustering, discriminant analysis, and density estimation. J. Am. Statist. Ass., 97, 611631.
  • Gordon, A. D. (1981) Classification. London: Chapman and Hall.
  • Grenander, U. (1956) On the theory of mortality measurement II. Skand. Akt., 39, 125153.
  • Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001) Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist., 29, 16531698.
  • Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2008) The support reduction algorithm for computing nonparametric function estimates in mixture models. Scand. J. Statist., 35, 385399.
  • Groeneboom, P. and Wellner, J. A. (1992) Information Bounds and Nonparametric Maximum Likelihood Estimation. Basel: Birkhäuser.
  • Hall, P., Marron, J. S. and Park, B. U. (1992) Smoothed cross-validation. Probab. Theor. Reltd Flds, 92, 120.
  • Hall, P., Park, B. U. and Samworth, R. J. (2008) Choice of neighbour order in nearest-neighbour classification. Ann. Statist., 36, 21352152.
  • Hand, D. J. (1981) Discrimination and Classification. New York: Wiley.
  • Hyndman, R. J. (1996) Computing and graphing highest density regions. Am. Statistn, 50, 120126.
  • Ibragimov, A. I. (1956) On the composition of unimodal distributions. Theor. Probab. Appl., 1, 255260.
  • Jongbloed, G. (1998) The iterative convex minorant algorithm for nonparametric estimation. J. Computnl Graph. Statist., 7, 310321.
  • Kappel, F. and Kuntsevich, A. (2000) An implementation of Shor's r-algorithm. Computnl Optimizn Appl., 15, 193205.
  • Koenker, R. and Mizera, I. (2010) Quasi-concave density estimation. Ann. Statist., to be published.
  • Lee, C. W. (2004) Subdivisions and triangulations of polytopes. In Handbook of Discrete and Computational Geometry (eds J. E.Goodman and J.O'Rourke), 2nd edn, pp. 383406. New York: CRC Press.
  • McLachlan, G. J. and Basford, K. E. (1988) Mixture Models: Inference and Applications to Clustering. New York: Dekker.
  • McLachlan, G. J. and Krishnan, T. (1997) The EM Algorithm and Extensions. New York: Wiley.
  • Mengersen, K. L. and Tweedie, R. L. (1996) Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist., 24, 101121.
  • Pal, J. K., Woodroofe, M. and Meyer, M. (2007) Estimating a Polya frequency function. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond, pp. 239249. Ohio: Institute of Mathematical Statistics.
  • Parzen, E. (1962) On the estimation of a probability density function and the mode. Ann. Math. Statist., 33, 10651076.
  • Prékopa, A. (1973) On logarithmically concave measures and functions. Acta Sci. Math., 34, 335343.
  • R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Rockafellar, R. T. (1997) Convex Analysis. Princeton: Princeton University Press.
  • Rosenblatt, M. (1956) Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27, 832837.
  • Rufibach, K. (2007) Computing maximum likelihood estimators of a log-concave density function. J. Statist. Computn Simuln, 77, 561574.
  • Rufibach, K. and Dümbgen, L. (2006) logcondens: estimate a log-concave probability density from i.i.d. observations. Universität Bern, Bern. (Available from http://CRAN.R-project.org/package=logcondens.)
  • Sain, S. R. (2002) Multivariate locally adaptive density estimation. Computnl Statist. Data Anal., 39, 165186.
  • Sain, S. R. and Scott, D. W. (1996) On locally adaptive density estimation. J. Am. Statist. Ass., 91, 15251534.
  • Schuhmacher, D. and Dümbgen, L. (2010) Consistency of multivariate log-concave density estimators. Statist. Probab. Lett., 80, 376380.
  • Schuhmacher, D., Hüsler, A. and Dümbgen, L. (2009) Multivariate log-concave distributions as a nearly parametric model. Technical Report 74. Universität Bern, Bern. (Available from http://arxiv.org/pdf/0907.0250v2.)
  • Scott, D. W. and Sain, S. R. (2004) Multi-dimensional density estimation. In Handbook of Statistics (eds C. R.Rao and E. J.Wegman), vol. 23, Data Mining and Computational Statistics. Amsterdam: Elsevier.
  • Seregin, A. and Wellner, J. A. (2010) Nonparametric estimation of convex-transformed densitiesAnn. Statist., to be published.
  • Shor, N. Z. (1985) Minimization Methods for Non-differentiable Functions. Berlin: Springer.
  • Street, W. M., Wolberg, W. H. and Mangasarian, O. L. (1993) Nuclear feature extraction for breast tumor diagnosis. In Proc. Int. Symp. Electronic Imaging: Science and Technology, San Jose, pp. 861870.
  • Swales, J. D. (ed.) (1985) Platt vs. Pickering: an Episode in Recent Medical History. Cambridge: Keynes.
  • Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985) Statistical Analysis of Finite Mixture Distributions. Chichester: Wiley.
  • Vapnik, V. N. and Mukherjee, S. (2000) Support vector method for multivariate density estimation. In Advances in Neural Information Processing Systems, pp. 659665. Cambridge: MIT Press.
  • Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
  • Walther, G. (2002) Detecting the presence of mixing with multiscale maximum likelihood. J. Am. Statist. Ass., 97, 508513.
  • Walther, G. (2009) Inference and modeling with log-concave distributions. Statist. Sci., 24, 319327.
  • Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing. Boca Raton: Chapman and Hall–CRC Press.
  • Zhang, X., King, M. L. and Hyndman, R. J. (2006) Bandwidth selection for multivariate kernel density estimation using MCMC. Computnl Statist. Data Anal., 50, 30093031.