SEARCH

SEARCH BY CITATION

References

  • Adler, R. J. (2010) The Geometry of Random Fields. Philadelphia: Society for Industrial and Applied Mathematics.
  • Adler, R. J. and Taylor, J. (2007) Random Fields and Geometry. New York: Springer.
  • Allcroft, D. J. and Glasbey, C. A. (2003) A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation. Appl. Statist., 52, 487498.
  • Arjas, E. and Gasbarra, D. (1996) Bayesian inference of survival probabilities, under stochastic ordering constraints. J. Am. Statist. Ass., 91, 11011109.
  • Auslander, L. and MacKenzie, R. E. (1977) Introduction to Differentiable Manifolds. New York: Dover Publications.
  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004) Hierarchical Modeling and Analysis for Spatial Data. Boca Raton: Chapman and Hall.
  • Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008) Gaussian predictive process models for large spatial data sets. J. R. Statist. Soc. B, 70, 825848.
  • Bansal, R., Staib, L. H., Xu, D., Zhu, H. and Peterson, B. S. (2007) Statistical analyses of brain surfaces using Gaussian random fields on 2-D manifolds. IEEE Trans. Med. Imgng, 26, 4657.
  • Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Statist. Soc. B, 36, 192236.
  • Besag, J. (1975) Statistical analysis of non-lattice data. Statistician, 24, 179195.
  • Besag, J. (1981) On a system of two-dimensional recurrence equations. J. R. Statist. Soc. B, 43, 302309.
  • Besag, J. and Kooperberg, C. (1995) On conditional and intrinsic autoregressions. Biometrika, 82, 733746.
  • Besag, J. and Mondal, D. (2005) First-order intrinsic autoregressions and the de Wijs process. Biometrika, 92, 909920.
  • Besag, J., York, J. and Mollié, A. (1991) Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math., 43, 159.
  • Bolin, D. and Lindgren, F. (2009) Wavelet Markov models as efficient alternatives to tapering and convolution fields. Mathematical Sciences Preprint 2009:13.Lund University, Lund.
  • Bolin, D. and Lindgren, F. (2011) Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann. Appl. Statist., 5, 523550.
  • Brenner, S. C. and Scott, R. (2007) The Mathematical Theory of Finite Element Methods, 3rd edn. New York: Springer.
  • Brohan, P., Kennedy, J., Harris, I., Tett, S. and Jones, P. (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res., 111.
  • Chen, C. M. and Thomée, V. (1985) The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. B, 26, 329354.
  • Chilés, J. P. and Delfiner, P. (1999) Geostatistics: Modeling Spatial Uncertainty. Chichester: Wiley.
  • Ciarlet, P. G. (1978) The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland.
  • Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
  • Cressie, N. and Huang, H. C. (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Statist. Ass., 94, 13301340.
  • Cressie, N. and Johannesson, G. (2008) Fixed rank kriging for very large spatial data sets. J. R. Statist. Soc. B, 70, 209226.
  • Cressie, N. and Verzelen, N. (2008) Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields. Computnl Statist. Data Anal., 52, 27942807.
  • Dahlhaus, R. and Künsch, H. R. (1987) Edge effects and efficient parameter estimation for stationary random fields. Biometrika, 74, 877882.
  • Das, B. (2000) Global covariance modeling: a deformation approach to anisotropy. PhD Thesis. Department of Statistics, University of Washington, Seattle.
  • Davis, T. A. (2006) Direct Methods for Sparse Linear Systems. Philadelphia: Society for Industrial and Applied Mathematics.
  • Diggle, P. J. and Ribeiro, P. J. (2006) Model-based Geostatistics. New York: Springer.
  • Duff, I. S., Erisman, A. M. and Reid, J. K. (1989) Direct Methods for Sparse Matrices, 2nd edn. New York: Clarendon.
  • Edelsbrunner, H. (2001) Geometry and Topology for Mesh Generation. Cambridge: Cambridge University Press.
  • Eidsvik, J., Finley, A. O., Banerjee, S. and Rue, H. (2010) Approximate bayesian inference for large spatial datasets using predictive process models. Technical Report 9. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim.
  • Federer, H. (1951) Hausdorff measure and Lebesgue area. Proc. Natn. Acad. Sci. USA, 37, 9094.
  • Federer, H. (1978) Colloquium lectures on geometric measure theory. Bull. Am. Math. Soc., 84, 291338.
  • Fuentes, M. (2001) High frequency kriging for nonstationary environmental processes. Environmetrics, 12,469483.
  • Fuentes, M. (2008) Approximate likelihood for large irregular spaced spatial data. J. Am. Statist. Ass., 102, 321331.
  • Furrer, R., Genton, M. G. and Nychka, D. (2006) Covariance tapering for interpolation of large spatial datasets. J. Computnl Graph. Statist., 15, 502523.
  • George, A. and Liu, J. W. H. (1981) Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs: Prentice Hall.
  • Gneiting, T. (1998) Simple tests for the validity of correlation function models on the circle. Statist. Probab. Lett., 39, 119122.
  • Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data. J. Am. Statist. Ass., 97, 590600.
  • Gneiting, T., Kleiber, W. and Schlather, M. (2010) Matérn cross-covariance functions for multivariate random fields. J. Am. Statist. Ass., 105, 11671177.
  • Gschlößl, S. and Czado, C. (2007) Modelling count data with overdispersion and spatial effects. Statist. Pap., 49, 531552.
  • Guttorp, P. and Gneiting, T. (2006) Studies in the history of probability and statistics XLIX: on the Matérn correlation family. Biometrika, 93, 989995.
  • Guyon, X. (1982) Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika, 69, 95105.
  • Hansen, J., Ruedy, R., Glascoe, J. and Sato, M. (1999) GISS analysis of surface temperature change. J. Geophys. Res., 104, 3099731022.
  • Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T. and Karl, T. (2001A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 2394723963.
  • Hartman, L. and Hössjer, O. (2008) Fast kriging of large data sets with Gaussian Markov random fields. Computnl Statist. Data Anal., 52, 23312349.
  • Heine, V. (1955) Models for two-dimensional stationary stochastic processes. Biometrika, 42, 170178.
  • Henderson, R., Shimakura, S. and Gorst, D. (2002) Modelling spatial variation in leukemia survival data. J. Am. Statist. Ass., 97, 965972.
  • Higdon, D. (1998) A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Statist., 5, 173190.
  • Higdon, D., Swall, J. and Kern, J. (1999) Non-stationary spatial modeling. In Bayesian Statistics 6(eds J. M.Bernardo, J. O.Berger, A. P.Dawid and A. F. M.Smith), pp. 761768. New York: Oxford University Press.
  • Hjelle, Ø. and Dæhlen, M. (2006) Triangulations and Applications. Berlin: Springer.
  • Hrafnkelsson, B. and Cressie, N. A. C. (2003) Hierarchical modeling of count data with application to nuclear fall-out. Environ. Ecol. Statist., 10, 179200.
  • Hughes-Oliver, J. M., Gonzalez-Farias, G., Lu, J. C. and Chen, D. (1998) Parametric nonstationary correlation models. Statist. Probab. Lett., 40, 267278.
  • Ilić, M., Turner, I. W. and Anh, V. (2008) A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation. J. Appl. Math. Stoch. Anal., 104525.
  • Jones, R. H. (1963) Stochastic processes on a sphere. Ann. Math. Statist., 34, 213218.
  • Jun, M. and Stein, M. L. (2008) Nonstationary covariance models for global data. Ann. Appl. Statist., 2, 12711289.
  • Karypis, G. and Kumar, V. (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Scient. Comput., 20, 359392.
  • Kneib, T. and Fahrmeir, L. (2007) A mixed model approach for geoadditive hazard regression. Scand. J. Statist., 34, 207228.
  • Krantz, S. G. and Parks, H. R. (2008) Geometric Integration Theory. Boston: Birkhäuser.
  • Lindgren, F. and Rue, H. (2008) A note on the second order random walk model for irregular locations. Scand. J. Statist., 35, 691700.
  • McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
  • Paciorek, C. and Schervish, M. (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17, 483506.
  • Peterson, T. and Vose, R. (1997) An overview of the Global Historical Climatology Network temperature database. Bull. Am. Meteorol. Soc., 78, 28372849.
  • Pettitt, A. N., Weir, I. S. and Hart, A. G. (2002) A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Statist. Comput., 12, 353367.
  • Quarteroni, A. M. and Valli, A. (2008) Numerical Approximation of Partial Differential Equations, 2nd edn.New York: Springer.
  • Rozanov, A. (1982) Markov Random Fields. New York: Springer.
  • Rue, H. (2001) Fast sampling of Gaussian Markov random fields. J. R. Statist. Soc. B, 63, 325338.
  • Rue, H. and Held, L. (2005) Gaussian Markov Random Fields: Theory and Applications. London: Chapman and Hall.
  • Rue, H., Martino, S. and Chopin, N. (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Statist. Soc. B, 71, 319392.
  • Rue, H. and Tjelmeland, H. (2002) Fitting Gaussian Markov random fields to Gaussian fields. Scand. J. Statist., 29, 3150.
  • Samko, S. G., Kilbas, A. A. and Maricev, O. I. (1992) Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach.
  • Sampson, P. D. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Statist. Ass., 87, 108119.
  • Smith, T. (1934) Change of variables in Laplace's and other second-order differential equations. Proc. Phys. Soc., 46, 344349.
  • Song, H., Fuentes, M. and Gosh, S. (2008) A compariative study of Gaussian geostatistical models and Gaussian Markov random field models. J. Multiv. Anal., 99, 16811697.
  • Stein, M. (2005) Space-time covariance functions. J. Am. Statist. Ass., 100, 310321.
  • Stein, M. L. (1999) Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer.
  • Stein, M. L., Chi, Z. and Welty, L. J. (2004) Approximating likelihoods for large spatial data sets. J. R. Statist. Soc. B, 66, 275296.
  • Vecchia, A. V. (1988) Estimation and model identification for continuous spatial processes. J. R. Statist. Soc. B, 50, 297312.
  • Wahba, G. (1981) Spline interpolation and smoothing on the sphere. SIAM J. Scient. Statist. Comput., 2, 516.
  • Wall, M. M. (2004) A close look at the spatial structure implied by the CAR and SAR models. J. Statist. Planng Inf., 121, 311324.
  • Weir, I. S. and Pettitt, A. N. (2000) Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data. Appl. Statist., 49, 473484.
  • Whittle, P. (1954) On stationary processes in the plane. Biometrika, 41, 434449.
  • Whittle, P. (1963) Stochastic processes in several dimensions. Bull. Inst. Int. Statist., 40, 974994.
  • Yue, Y. and Speckman, P. (2010) Nonstationary spatial Gaussian Markov random fields. J. Computnl Graph. Statist., 19, 96116.