SEARCH

SEARCH BY CITATION

References

  • Aitkin, M. (1999) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117128.
  • Akaike, H. (1974) A new look at the statistical model identification. IEEE. Trans. Autom. Control, 19, 716723.
  • Akaike, H. (1983) Information measures and model selection. Bull. Int. Statist. Inst., 50, 277290.
  • Benjamin, M., Rigby, R. A. and Stasinopoulos, D. M. (2003) Generalized Autoregressive Moving Average Models. J. Am. Statist. Ass., 98, 214223.
  • Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. New York: Springer.
  • Besag, J. and Higdon, D. (1999) Bayesian analysis of agriculture field experiments (with discussion). J. R. Statist. Soc. B, 61, 691746.
  • Besag, J., York, J. and Mollié, A. (1991) Bayesian image restoration, with applications in spatial statistics (with discussion). Ann. Inst. Statist. Math., 43, 159.
  • de Boor, C. (1978) A Practical Guide to Splines. New York: Springer.
  • Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion). J. R. Statist. Soc. B, 26, 211252.
  • Box, G. E. P. and Tiao, G. C. (1973) Bayesian Inference in Statistical Analysis. New York: Wiley.
  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 925.
  • Breslow, N. E. and Lin, X. (1995) Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika, 82, 8191.
  • Claeskens, G. and Hjort, N. L. (2003) The focused information criterion. J. Am. Statist. Ass., 98, 900916.
  • Cleveland, W. S., Grosse, E. and Shyu, M. (1993) Local regression models. In Statistical Modelling in S (eds I.Chambers and T.Hastie), pp. 309376. New York: Chapman and Hall.
  • Cole, T. J., Freeman, J. V. and Preece, M. A. (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Statist. Med., 17, 407429.
  • Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Statist. Med., 11, 13051319.
  • Cole, T. J. and Roede, M. J. (1999) Centiles of body mass index for Dutch children age 0-20 years in 1980—a baseline to assess recent trends in obesity. Ann. Hum. Biol., 26, 303308.
  • Cox, D. R. and Reid, N. (1987) Parameter orthogonality and approximate conditional inference (with discussion). J. R. Statist. Soc. B, 49, 139.
  • Crisp, A. and Burridge, J. (1994) A note on nonregular likelihood functions in heteroscedastic regression models. Biometrika, 81, 585587.
  • CYTEL Software Corporation (2001) EGRET for Windows. Cambridge: CYTEL Software Corporation.
  • Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002) Analysis of Longitudinal Data, 2nd edn. Oxford: Oxford University Press.
  • Draper, D. (1995) Assessment and propagation of model uncertainty (with discussion). J. R. Statist. Soc. B, 57, 4597.
  • Dunn, P. K. and Smyth, G. K. (1996) Randomised quantile residuals. J. Comput. Graph. Statist., 5, 236244.
  • Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statist. Sci., 11, 89121.
  • Fahrmeir, L. and Lang, S. (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Statist., 50, 201220.
  • Fahrmeir, L. and Tutz, G. (2001) Multivariate Statistical Modelling based on Generalized Linear Models, 2nd edn. New York: Springer.
  • Gange, S. J., Muñoz, A., Sáez, M. and Alonso, J. (1996) Use of the beta–binomial distribution to model the effect of policy changes on appropriateness of hospital stays. Appl. Statist., 45, 371382.
  • Green, P. J. (1985) Linear models for field trials, smoothing and cross-validation. Biometrika, 72, 527537.
  • Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models. London: Chapman and Hall.
  • Harvey, A. C. (1989) Forecasting Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press.
  • Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. London: Chapman and Hall.
  • Hastie, T. and Tibshirani, R. (1993) Varying-coefficient models (with discussion). J. R. Statist. Soc. B, 55, 757796.
  • Hastie, T. J. and Tibshiran, R. J. (2000) Bayesian backfitting. Statist. Sci., 15, 213223.
  • Hastie, T. J., Tibshirani, R. J. and Friedman, J. (2001) The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer.
  • Hjort, N. L. and Claeskens, G. (2003) Frequentist model average estimation. J. Am. Statist. Ass., 98, 879899.
  • Hodges, J. S. (1998) Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion). J. R. Statist. Soc. B, 60, 497536.
  • Hodges, J. S. and Sargent, D. J. (2001) Counting degrees of freedom in hierarchical and other richly-parameterised models. Biometrika, 88, 367379.
  • Ihaka, R. and Gentleman, R. (1996) R: a language for data analysis and graphics. J. Computnl Graph. Statist., 5, 299314.
  • Johnson, N. L. (1949) Systems of frequency curves generated by methods of translation. Biometrika, 36, 149176.
  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, vol. I, 2nd edn. New York: Wiley.
  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, vol. II, 2nd edn. New York: Wiley.
  • Johnson, N. L., Kotz, S. and Kemp, A. W. (1993) Univariate Discrete Distributions, 2nd edn. New York: Wiley.
  • Kohn, R. and Ansley, C. F. (1998) Equivalence between Bayesian smoothness prior and optimal smoothing for function estimation. In Bayesian Analysis of Time Series and Dynamic Models (ed. J. C.Spall), pp. 393430. New York: Dekker.
  • Kohn, R., Ansley, C. F. and Tharm, D. (1991) The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. J. Am. Statist. Ass., 86, 10421050.
  • Lange, K. (1999) Numerical Analysis for Statisticians. New York: Springer.
  • Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989) Robust statistical modelling using the t distribution. J. Am. Statist. Ass., 84, 881896.
  • Lee, Y. and Nelder, J. A. (1996) Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619678.
  • Lee, Y. and Nelder, J. A. (2000) Two ways of modelling overdispersion in non-normal data. Appl. Statist., 49, 591598.
  • Lee, Y. and Nelder, J. A. (2001a) Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88, 9871006.
  • Lee, Y. and Nelder, J. A. (2001b) Modelling and analysing correlated non-normal data. Statist. Modllng, 1, 316.
  • Lin, X. and Zhang, D. (1999) Inference in generalized additive mixed models by using smoothing splines. J. R. Statist. Soc. B, 61, 381400.
  • Lopatatzidis, A. and Green, P. J. (2000) Nonparametric quantile regression using the gamma distribution. To be published.
  • Madigan, D. and Raftery, A. E. (1994) Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Am. Statist. Ass., 89, 15351546.
  • McCulloch, C. E. (1997) Maximum likelihood algorithms for generalized linear mixed models. J. Am. Statist. Ass., 92, 162170.
  • Nelder, J. A. and Wedderburn, R. W. M. (1972) Generalized linear models. J. R. Statist. Soc. A, 135, 370384.
  • Nelson, D. B. (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 59, 347370.
  • Ortega, J. M. and Rheinboldt, W. C. (1970) Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press.
  • Pawitan, Y. (2001) In All Likelihood: Statistical Modelling and Inference using Likelihood. Oxford: Oxford University Press.
  • Raftery, A. E. (1996) Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika, 83, 251266.
  • Raftery, A. E. (1999) Bayes Factors and BIC: comment on ‘A critique of the Bayesian Information Criterion for model selection’. Sociol. Meth. Res., 27, 411427.
  • Reinsch, C. (1967) Smoothing by spline functions. Numer. Math., 10, 177183.
  • Rigby, R. A. and Stasinopoulos, D. M. (1996a) A semi-parametric additive model for variance heterogeneity. Statist. Comput., 6, 5765.
  • Rigby, R. A. and Stasinopoulos, D. M. (1996b) Mean and dispersion additive models. In Statistical Theory and Computational Aspects of Smoothing (eds W.Härdle and M. G.Schimek), pp. 215230. Heidelberg: Physica.
  • Rigby, R. A. and Stasinopoulos, D. M. (2004a) Box-Cox t distribution for modelling skew and leptokurtotic data. Technical Report 01/04. STORM Research Centre, London Metropolitan University, London.
  • Rigby, R. A. and Stasinopoulos, D. M. (2004b) Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. Statist. Med., 23, 30533076.
  • Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.
  • Royston, P. and Altman, D. G. (1994) Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Appl. Statist., 43, 429467.
  • Schumaker, L. L. (1993) Spline Functions: Basic Theory. Melbourne: Krieger.
  • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461464.
  • Silverman, B. W. (1985) Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). J. R. Statist. Soc. B, 47, 152.
  • Smith, P. L. (1979) Splines as a useful and convenient statistical tool. Am. Statistn, 33, 5762.
  • Speed, T. P. (1991) Comment on ‘That BLUP is a good thing: the estimation of random effects’ (by G. K. Robinson). Statist. Sci., 6, 4244.
  • Stasinopoulos, D. M. and Rigby, R. A. (1992) Detecting break points in generalised linear models. Comput. Statist. Data Anal., 13, 461471.
  • Stasinopoulos, D. M., Rigby, R. A. and Akantziliotou, C. (2004) Instructions on how to use the GAMLSS package in R. Technical Report 02/04. STORM Research Centre, London Metropolitan University, London.
  • Stasinopoulos, D. M., Rigby, R. A. and Fahrmeir, L. (2000) Modelling rental guide data using mean and dispersion additive models. Statistician, 49, 479493.
  • Thall, P. F. and Vail, S. C. (1990) Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657671.
  • Tierney, L. and Kadane, J. B. (1986) Accurate approximations for posterior moments and marginal densities. J. Am. Statist. Ass., 81, 8286.
  • Tong, H. (1990) Non-linear Time Series. Oxford: Oxford University Press.
  • Verbyla, A. P., Cullis, B. R., Kenward, M. G. and Welham, S. J. (1999) The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion). Appl. Statist., 48, 269311.
  • Wahba, G. (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. R. Statist. Soc. B, 40, 364372.
  • Wahba, G. (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Statist., 4, 13781402.
  • Wood, S. N. (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Statist. Soc. B, 62, 413428.
  • Wood, S. N. (2001) mgcv: GAMs and Generalised Ridge Regression for R. R News, 1, 2025.
  • Zeger, S. L. and Karim, M. R. (1991) Generalized linear models with random effects: a Gibbs sampling approach. J. Am. Statist. Ass., 86, 7995.

References in the discussion

  • Amoroso, L. (1925) Ricerche intorno alla curve dei redditi. Ann. Mat. Pura Appl. IV, 2, 123159.
  • Azzalini, A. (1985) A class of distributions which includes the normal ones. Scand. J. Statist., 123, 171178.
  • Breslow, N. E. and Lin, X. (1995) Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika, 82, 8191.
  • Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Statist. Med., 11, 13051319.
  • Fernandez, C. and Steel, M. F. J. (1998) On Bayesian modeling of fat tails and skewness. J. Am. Statist. Ass., 93, 359371.
  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, vol. I, 2nd edn. New York: Wiley.
  • Jones, M. C. and Faddy, M. J. (2003) A skew extension of the t-distribution, with applications. J. R. Statist. Soc. B, 65, 159174.
  • Lane, P. W. (1996) Generalized nonlinear models. In Compstat Proceedings in Computational Statistics (ed. A.Prat), pp. 331336. Heidelberg: Physica.
  • Lee, Y. (2004) Estimating intraclass correlation for binary data using extended quasi-likelihood. Statist. Modllng, 4, 113126.
  • Lee, Y. and Nelder, J. A. (1996) Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619678.
  • Lee, Y. and Nelder, J. A. (2001) Hierarchical generalised linear models: a synthesis of generalised linear models, random effect models and structured dispersions. Biometrika, 88, 9871006.
  • Lee, Y. and Nelder, J. A. (2004) Double hierarchical generalized linear models. To be published.
  • Little, R. J. A. and Rubin, D. B. (2002) Statistical Analysis with Missing Data, 2nd edn. New York: Wiley.
  • Longford, N. T. (2003) An alternative to model selection in ordinary regression. Statist. Comput., 13, 6780.
  • Longford, N. T. (2005) Modern Analytical Equipment for the Survey Statistician: Missing Data and Small-area Estimation. New York: Springer. To be published.
  • McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
  • Mooney, J. A., Helms, P. J. and Jolliffe, I. T. (2003) Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome. Computnl Statist. Data Anal., 41, 505513.
  • Nandi, A. K. and Mämpel, D. (1995) An extension of the generalized Gaussian distribution to include asymmetry. J. Franklin Inst., 332, 6775.
  • Noh, M. and Lee, Y. (2004) REML estimation for binary data in GLMMs. To be published.
  • Pan, H. and Cole, T. J. (2004) A comparison of goodness of fit tests for age-related reference ranges. Statist. Med., 23, 17491765.
  • R Development Core Team (2004) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. (Available from http://www.R-project.org.)
  • Rider, P. R. (1958) Generalized Cauchy distributions. Ann. Inst. Statist. Math., 9, 215223.
  • Rieck, J. R. and Nedelman, J. R. (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics, 33, 5160.
  • Rigby, R. A. and Stasinopoulos, D. M. (2004a) Box-Cox t distribution for modelling skew and leptokurtotic data. Technical Report 01/04 . STORM Research Centre, London Metropolitan University, London.
  • Rigby, R. A. and Stasinopoulos, D. M. (2004b) Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. Statist. Med., 23, 30533076.
  • Stacy, E. W. (1962) A generalization of the gamma distribution. Ann. Math. Statist., 33, 11871192.
  • Wu, Y., Fedorov, V. V. and Propert, K. J. (2003) Optimal design for beta distributed responses. Technical Report 2004-1 . GlaxoSmithKline, Collegeville.