SEARCH

SEARCH BY CITATION

References

  • Aitkin, M. and Alfo, M. (1987) Regression models for binary longitudinal responses. Statist. Comput., 8, 289307.
  • Besag, J. and Higdon, P. (1999) Bayesian analysis of agricultural field experiments (with discussion). J. R. Statist. Soc. B, 61, 691746.
  • Bjørnstad, J. F. (1996) On the generalization of the likelihood function and likelihood principle. J. Am. Statist. Ass., 91, 791806.
  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 925.
  • Breslow, N. E. and Lin, X. (1995) Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82, 8191.
  • Brumback, B. A. and Rice, J. A. (1998) Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion). J. Am. Statist. Ass., 93, 961994.
  • Chernoff, H. (1954) On the distribution of the likelihood ratio. Ann. Math. Statist., 25, 573578.
  • Cox, D. R. and Reid, N. (1987) Parameter orthogonality and approximate conditional inference. J. R. Statist. Soc. B, 49, 118.
  • Davidian, M. and Carroll, R. J. (1988) A note on extended quasi-likelihood. J. R. Statist. Soc. B, 50, 7482.
  • Diggle, P. J., Liang, K. and Zeger, S. L. (1994) Analysis of Longitudinal Data. Oxford: Clarendon.
  • Durbin, J. and Koopman, S. J. (2000) Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion). J. R. Statist. Soc. B, 62, 356.
  • Engel, R. E. (1995) ARCH. Oxford: Oxford University Press.
  • Goldstein, H. (1995) Multilevel Statistical Models. London: Arnold.
  • Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a Roughness Penalty Approach. London: Chapman and Hall.
  • Ha, I. D. and Lee, Y. (2005) Comparison of hierarchical likelihood versus orthodox BLUP approach for frailty models. Biometrika, 92, 717723.
  • Ha, I. D., Lee, Y. and Song, J. K. (2001) Hierarchical likelihood approach for frailty models. Biometrika, 88, 233243.
  • Ha, I. D., Lee, Y. and Song, J. K. (2002) Hierarchical likelihood approach for mixed linear models with censored data. Liftime Data Anal., 8, 163176.
  • Ha, I. D., Park, T. and Lee, Y. (2003) Joint modelling of repeated measures and survival time data. Biometr. J., 45, 647658.
  • Harvey, A. C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press.
  • Harvey, A. C., Ruiz, E. and Shephard, N. (1994) Multivariate stochastic variance models. Rev. Econ. Stud., 61, 247264.
  • Harville, D. (1977) Maximum likelihood approaches to variance component estimation and related problems. J. Am. Statist. Ass., 72, 320340.
  • Heckman, J. and Singer, B. (1984) A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica, 52, 271320.
  • Henderson, C. R. (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics, 31, 423447.
  • Hougaard, P. (2000) Analysis of Multivariate Survival Data. New York: Springer.
  • Hudak, S. J., Saxena, A., Bucci, R. J. and Malcom, R. C. (1978) Development of standard methods of testing and analyzing fatigue crack growth rate data. Technical Report AFML-TR-78-40. Westinghouse R&D Center, Westinghouse Electric Corporation, Pittsburgh.
  • Kim, S., Shephard, N. and Chib, S. (1998) Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Econ. Stud., 98, 361393.
    Direct Link:
  • Laird, N. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Statist. Ass., 73, 805811.
  • Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989) Robust statistical modeling using the t Distribution. J. Am. Statist. Ass., 84, 881896.
  • Lawless, J. and Crowder, M. (2004) Covariates and random effects in a gamma process model with application to degeneration and failure. Liftime Data Anal., 10, 213227.
  • Lee, Y. (2001) Can we recover information from concordant pairs in binary matched paired? J. Appl. Statist., 28, 239246.
  • Lee, Y. (2004) Estimating intraclass correlation for binary data using extended quasi-likelihood. Statist. Modllng, 4, 113126.
  • Lee, Y. and Nelder, J. A. (1996) Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619678.
  • Lee, Y. and Nelder, J. A. (1998) Generalized linear models for the analysis of quality-improvement experiments. Can. J. Statist., 26, 95105.
  • Lee, Y. and Nelder, J. A. (2000) Two ways of modelling overdispersion in non-normal data. Appl. Statist., 49, 591598.
  • Lee, Y. and Nelder, J. A. (2001a) Hierarchical generalised linear models: a synthesis of generalised linear models, random effect models and structured dispersions. Biometrika., 88, 9871006.
  • Lee, Y. and Nelder, J. A. (2001b) Modelling and analysing correlated non-normal data. Statist. Modllng, 1, 316.
  • Lee, Y. and Nelder, J. A. (2005a) Fitting via alternative random-effect models. Statist. Comput., to be published.
  • Lee, Y. and Nelder, J. A. (2005b) Likelihood for random-effect models (with discussion). Statist. Oper. Res. Trans., 29, 141182.
  • Lee, Y., Noh, M. and Ryu, K. (2005) HGLM modeling of dropout process using a frailty model. Comput. Statist., 20, 295309.
  • Lin, X. and Breslow, N. E. (1996) Bias correction in generalised linear mixed models with multiple components of dispersion. J. Am. Statist. Ass., 91, 10071016.
  • Lindsey, J. K. and Lindsey, P. J. (2006) Multivariate distributions with correlation matrices for repeated measurements. Comput. Statist. Data. Anal., 50, 720732.
  • Lindstrom, M. J. and Bates, D. B. (1990) Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 673687.
  • Longford, N. (1993) Random Coefficient Models. Oxford: Oxford University Press.
  • Lu, C. J. and Meeker, W. Q. (1993) Using degeneration measurements to estimate a time-to-failure distribution. Technometrics, 35, 161174.
  • Ma, R., Krewski, D. and Burnett, R. T. (2003) Random effects Cox models: a Poisson modelling approach. Biometrika, 90, 157169.
  • McLachlan, G. J. (1987) On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl. Statist., 36, 318324.
  • McLachlan, G. J. and Krishnan, T. (1997) The EM Algorithm and Extensions. New York: Wiley.
  • Medina, A., Lakhina, H., Matta, I. and Byers, J. (2001) BRITE: universal topology generation from a user's perspective. Technical Report. Boston University, Boston.
  • Nelder, J. A. and Lee, Y. (1991) Generalized linear models for the analysis of Taguchi-type experiments. Appl. Stochast. Mod. Data Anal., 7, 107120.
  • Nelder, J. A. and Lee, Y. (1992) Likelihood, quasi-likelihood and pseudolikelihood: some comparisons. J. R. Statist. Soc. B, 54, 273284.
  • Nelder, J. A. and Pregibon, D. (1987) An extended quasi-likelihood function. Biometrika, 74, 221231.
  • Nelder, J. A. and Wedderburn, R. W. M. (1972) Generalized linear models. J. R. Statist. Soc. A, 135, 370384.
  • Noh, M. and Lee, Y. (2004) REML estimation for binary data in generalized linear mixed models. To be pub-lished.
  • Noh, M., Lee, Y. and Pawitan, Y. (2005) Robust ascertainment-adjusted parameter estimation. Genet. Epidem., 29, 6875.
  • Noh, M., Yip, Y., Lee, Y. and Pawitan, Y. (2004) Multicomponent variance estimation for binary traits in family-based studies. Genet. Epidem., to be published.
  • Pan, J. X. and MacKenzie, G. (2003) On modelling mean-covariance structures in longitudinal studies. Biometrika, 90, 239244.
  • Patil, G. P. (1963) A characterization of the exponential-type distribution. Biometrika, 50, 205207.
  • Pawitan, Y. (2001) In All Likelihood: Statistical Modelling and Inference using Likelihood. Oxford: Oxford University Press.
  • Pourahmadi, M. (2000) Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87, 425435.
  • Rigby, R. A. and Stasinopoulos, D. M. (1996) MADAM macros to fit mean and dispersion additive models. In GLIM4 Macro Library Manual, Release 2.0 (eds A.Scallan and G.Morgan), pp. 4884. Oxford: Numerical Algorithms Group.
  • Robinson, G. K. (1991) That BLUP is a good thing: the estimation of random effects. Statist. Sci., 6, 1551.
  • Robinson, M. E. and Crowder, M. (2000) Bayesian methods for a growth-curve degradation model with repeated measures. Liftime Data Anal., 6, 357374.
  • Saha, K. and Paul, S. (2005) Bias corrected maximum likelihood estimator of negative binomial dispersion parameter. Biometrics, 61, 179185.
  • Schall, R. (1991) Estimation in generalized linear models with random effects. Biometrika, 40, 917927.
  • Schumacher, M., Olschewski, M. and Schmoor, C. (1987) The impact of heterogeneity on the comparison of survival times. Statist. Med., 6, 773784.
  • Shephard, N. (1996) Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Econometrics, Finance and Other Fields (eds D. R.Cox, O. E.Barndorff-Nielsen and D. V.Hinkley). London: Chapman and Hall.
  • Shephard, N. and Pitt, M. R. (1997) Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653667.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583639.
  • Thall, P. F. and Vail, S. C. (1990) Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657671.
  • Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data. Berlin: Springer.
  • Verbyla, A. P., Cullis, B. R., Kenward, M. G. and Welham, S. J. (1999) The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion). Appl. Statist., 48, 269311.
  • Vonesh, E. F. (1996) A note on the use of Laplace's approximation for nonlinear mixed-effects models. Biometrika, 83, 447452.
  • Vonesh, E. F., Wang, H., Nie, L. and Majumdar, D. (2002) Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models. J. Am. Statist. Ass., 97, 271283.
  • Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
  • Wakefield, J. C., Smith, A. F. M., Racine-Poon, A. and Gelfand, A. E. (1994) Bayesian analysis of linear and non-linear population models by using the Gibbs sampler. Appl. Statist., 43, 201221.
  • Wedderburn, R. W. M. (1974) Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. Biometrika, 61, 439447.
  • Welham, S., Cullis, B. R., Kenward, M. G. and Thompson, R. (2004) The analysis of longitudinal data using model L-splines. Statist. Med., to be published.
  • Wolfinger, R. D. (1993) Covariance structure selection in general mixed models. Communs Statist. Simuln Computn, 22, 10791106.
  • Yun, S. and Lee, Y. (2004a) Comparison of hierarchical and marginal likelihood estimators for binary outcomes. Comput. Statist. Data. Anal., 45, 639650.
  • Yun, S. and Lee, Y. (2004b) Robust estimation in mixed linear models with non-monotone missingness. Statist. Med., to be published.
  • Yun, S., Sohn, S. Y. and Lee, Y. (2004) Modeling non-homogeneous LRD queueing system with covariates: inverse gamma mixture of Pareto. J. Appl. Statist., to be published.
  • Zeger, S. L. and Diggle, P. J. (1994) Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics, 50, 689699.
  • Zimmerman, D. and Nunez-Anton, V. (2001) Parametric modelling of growth curve data: an overview. Test, 10, 173.

References in the discussion

  • Aalen, O. O. (1988) Heterogeneity in survival analysis. Statist.Med., 7, 11211137.
  • Barndorff-Nielsen, O. E. (1983) On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343365.
  • Barndorff-Nielsen, O. E. and Shephard, N. (2001) Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics (with discussion). J. R. Statist. Soc. B, 63, 167241.
  • Bayarri, M. J., DeGroot, M. H. and Kadane, J. B. (1988) What is the likelihood function (with discussion)? In Statistical Decision Theory and Related Topics IV, vol. 1 (eds S. S.Gupta and J. O.Berger). New York: Springer.
  • Bellio, R. and Varin, C. (2005) A pairwise likelihood approach to generalized linear models with crossed random effects. Statist. Modllng, 5, 217227.
  • Birnbaum, A. (1962) On the foundations of statistical inference (with discussion). J. Am. Statist. Ass., 57, 269306.
  • Bjørnstad, J. F. (1996) On the generalization of the likelihood function and likelihood principle. J. Am. Statist. Ass., 91, 791806.
  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 925.
  • Breslow, N. E. and Lin, X. (1995) Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82, 8191.
  • Browne, W. J. (1998) Applying MCMC methods to multi-level models. PhD Thesis. University of Bath, Bath.
  • Browne, W. J., Draper, D., Goldstein, H. and Rasbash, J. (2002) Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation. Computnl Statist. Data Anal., 39, 203225.
  • Carlin, B. P. and Louis, T. A. (2000) Bayesian and Empirical Bayesian Methods for Data Analysis. London: Chapman and Hall.
  • Chen, K., Hu, I. and Ying, Z. (1999) Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs. Ann. Statist., 27, 11551163.
  • Cox, D. R. and Reid, N. (1987) Parameter orthogonality and approximate conditional inference. J. R. Statist. Soc. B, 49, 118.
  • Cox, D. R. and Reid, N. (2004) A note on pseudo-likelihood constructed from marginal densities. Biometrika, 91, 729737.
  • Duffie, D. and Singleton, K. (1993) Simulated moments estimation of Markov models of asset prices. Econometrica, 61, 929952.
  • Eberlein, E. and Keller, U. (1995) Hyperbolic distributions in finance. Bernoulli, 1, 281299.
  • Efron, B. (1986) Double exponential families and their use in generalized linear regression. J. Am. Statist. Ass., 81, 709721.
  • Gallant, A. and Tauchen, G. (1996) Which moments to match. Econometr. Theory, 12, 657681.
  • Goldstein, H. (1986) Multilevel mixed linear model analysis using iterative generalised least squares. Biometrika, 73, 4356.
  • Goldstein, H. and Rasbash, J. (1996) Improved approximations for multilevel models with binary responses. J. R. Statist. Soc. A, 159, 505513.
  • Gourieroux, C., Monfort, A. and Renault, E. (1993) Indirect inference. J. Appl. Econometr., 8, S85S118.
  • Ha, I. D. and Lee, Y. (2005) Comparison of hierarchical likelihood versus orthodox BLUP approach for frailty models. Biometrika, 92, 717723.
  • Hougaard, P. (2000) Analysis of Multivariate Survival Data. New York: Springer.
  • Lane, P. W. and Nelder, J. A. (1982) Analysis of covariance and standardization as instances of prediction. Biometrics, 38, 613621.
  • Lee, Y. (2004) Estimating intraclass correlation for binary data using extended quasi-likelihood. Statist. Modllng, 4, 113126.
  • Lee, Y. and Nelder, J. A. (1996) Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619678.
  • Lee, Y. and Nelder, J. A. (2000) The relationship between double-exponential families and extended quasi-likelihood families, with application to modelling Geissler's human sex ratio data. Appl. Statist., 49, 413419.
  • Lee, Y. and Nelder, J. A. (2001a) Hierarchical generalised linear models: a synthesis of generalised linear models, random effect models and structured dispersions. Biometrika, 88, 9871006.
  • Lee, Y. and Nelder, J. A. (2001b) Modelling and analysing correlated non-normal data. Statist. Modllng, 1, 316.
  • Lee, Y. and Nelder, J. A. (2005a) Likelihood for random-effect models (with discussion). Statist. Oper. Res. Trans., 29, 141182.
  • Lee, Y. and Nelder, J. A. (2005b) Fitting via alternative random-effect models. Statist. Comput., to be published.
  • Leppik, I. E., Dreifuss, F. E., Porter, R., Bowman, T., Santilli, N., Jacobs, M., Crosby, C., Cloyd, J., Stackman, J. and Graves, N. (1987) A controlled study of progabide in partial seizures: methodology and results. Neurology, 37, 963968.
  • Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322.
  • Lin, X. and Breslow, N. E. (1996) Bias correction in generalized linear mixed models with multiple components of dispersion. J. Am. Statist. Ass., 91, 10071016.
  • Lindsay, B. G. (1988) Composite likelihood methods. Contemp. Math., 80, 221239.
  • Ma, R. (1999) An orthodox BLUP approach to generalized linear mixed models. PhD Thesis. University of British Columbia, Vancouver.
  • MacKenzie, G., Ha, I. D. and Lee, Y. (2006) Multivariate survival models based on the GTDL. Submitted to Biostatistics.
  • MacKenzie, G. and Pan, J. X. (2006) Optimal joint-mean covariance modelling. In Select. Proc. 2nd Int. Wrkshp Correlated Data Modelling (eds D.Gregori, G.MacKenzie, H.Friedl and R.Corradetti). Milan: Agneli. To be published.
  • Madan, D. B. and Seneta, E. (1990) The variance gamma model for share market returns. J. Bus., 63, 511524.
  • Molenberghs, G. and Verbeke, G. (2005) Models for Discrete Longitudinal Data. New York: Springer.
  • Nelder, J. A. (1965) The analysis of randomized experiments with orthogonal block structure: I, Block structure and the null analysis of variance; II, Treatment structure and the general analysis of variance. Proc. R. Soc. Lond. A, 283, 147178.
  • Nelder, J. A. and Lee, Y. (1991) Generalized linear models for the analysis of Taguchi-type experiments. Appl. Stochast. Mod. Data Anal., 7, 107120.
  • Nelder, J. A. and Wedderburn, R. W. M. (1972) Generalized linear models. J. R. Statist. Soc. A, 135, 370384.
  • Noh, M., Ha, I. D. and Lee, Y. (2006) Dispersion frailty models and HGLMs. Statist. Med., to be published.
  • Noh, M. and Lee, Y. (2005) Robust modelling for inference from GLM classes. Manuscript. To be published.
  • Noh, M., Lee, Y. and Pawitan, Y. (2005) Robust ascertainment-adjusted parameter estimation. Genet. Epidem., 29, 6875.
  • Pan, J. X. and MacKenzie, G. (2003) On modelling mean-covariance structures in longitudinal studies. Biometrika, 90, 239244.
  • Payne, R. W. (2004) Confidence intervals and tests for contrasts between combined effects in generally balanced designs. In COMPSTAT 2004: Proc. Computational Statistics, pp. 16291636. Heidelberg: Physica.
  • Payne, R. W. and Tobias, R. D. (1992) General balance, combination of information and the analysis of covariance. Scand. J. Statist., 19, 323.
  • Pourahmadi, M. (2000) Maximum likelihood estimation of generalized linear models for multivariate normal covariate matrix. Biometrika, 87, 425435.
  • Rao, C. R. (1965) The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika, 52, 355372.
  • Rasbash, J., Browne, W. J., Healy, M., Cameron, B. and Charlton, C. (2004) MLwiN (Version 2.0). London: Institute of Education.
  • Ridout, M. S., Demétrio, C. G. B. and Firth, D. (1999) Estimating intraclass correlation for binary data. Biometrics, 55, 137148.
  • Rigby, R. A. and Stasinopoulos, D. M. (2005) Generalized additive models for location, scale and shape (with discussion). Appl. Statist., 54, 507554.
  • Rodríguez, G. and Goldman, N. (1995) An assessment of estimation procedures for multilevel models with binary responses. J. R. Statist. Soc. A, 158, 7389.
  • Sandmann, G. and Koopman, S. (1998) Estimation of stochastic volatility models via Monte Carlo maximum likelihood. J. Econometr., 87, 271301.
  • Senn, S. (2000) Consensus and controversy in pharmaceutical statistics (with discussion). Statistician, 49, 135176.
  • Smyth, G. K. and Verbyla, A. P. (1999) Adjusted likelihood methods for modelling dispersion in generalized linear models. Environmetrics, 10, 696709.
  • Thall, P. F. and Vail, S. C. (1990) Some covariance-models for longitudinal count data with overdispersion. Biometrics, 46, 657671.
  • Varin, C. and Vidoni, P. (2005) A note on composite likelihood inference and model selection. Biometrika, 92, 519529.
  • Wedderburn, R. W. M. (1974) Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. Biometrika, 61, 439447.
  • Wolfinger, R. and O'Connell, M. (1993) Generalized linear mixed models: a pseudo-likelihood approach. J. Statist. Computn Simuln, 48, 233243.
  • Xia, N. and Zhang, Z. Z. (2005a) Convergence rate of Lee-Nelder estimators in Poisson-Gamma models. Acta Math. Appl. Sin., to be published.
  • Xia, N. and Zhang, Z. Z. (2005b) Asymptotic normality of Lee-Nelder estimators in a HGLM family. Working Paper. Beijing University of Technology, Beijing.
  • Xue, X. (2001) Analysis of childhood brain tumour data in New York City using frailty models. Statist. Med., 20, 34593473.
  • Yates, F. and Cochran, W. G. (1938) The analysis of groups of experiments. J. Agric. Sci., 28, 556580.
  • Yau, K. K. W. and Kuk, A. Y. C. (2002) Robust estimation in generalized linear mixed models. J. R. Statist. Soc. B, 64, 101117.