Diagnostics for multivariate imputations

Authors


Address for correspondence: Kobi Abayomi, Department of Statistics, Columbia University, New York, NY 10027, USA.
E-mail: kobi.abayomi@columbia.edu

Abstract

Summary.  We consider three sorts of diagnostics for random imputations: displays of the completed data, which are intended to reveal unusual patterns that might suggest problems with the imputations, comparisons of the distributions of observed and imputed data values and checks of the fit of observed data to the model that is used to create the imputations. We formulate these methods in terms of sequential regression multivariate imputation, which is an iterative procedure in which the missing values of each variable are randomly imputed conditionally on all the other variables in the completed data matrix. We also consider a recalibration procedure for sequential regression imputations. We apply these methods to the 2002 environmental sustainability index, which is a linear aggregation of 64 environmental variables on 142 countries.

Ancillary