SEARCH

SEARCH BY CITATION

References

  • Aalen, O. O., Fosen, J., Weedon-Fekjaer, H., Borgan, Ø. and Husebye, E. (2004) Dynamic analysis of multivariate failure time data. Biometrics, 60, 764773.
  • Billingsley, P. (1981) Statistical Inference for Markov Processes. Chicago: Chicago University Press.
  • Bond, S. J., Farewell, V. T., Schentag, C. T. and Gladman, D. D. (2007) Predictors for radiological damage in psoriatic arthritis: results from a single centre. Ann. Rheum. Dis., 66, 377388.
  • Cox, D. R. and Miller, A. D. (1965) The Theory of Stochastic Processes. London: Chapman and Hall.
  • Cox, D. R. and Snell, E. J. (1981) Applied Statistics: Principles and Examples. London: Chapman and Hall.
  • Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations. New Jersey: Prentice Hall.
  • Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl. Statist., 43, 4993.
  • Farewell, V. T. (1979) Some results on the estimation of logistic models based on retrospective data. Biometrika, 66, 2732.
  • Fitzmaurice, G. M., Heath, A. F. and Clifford, P. (1996) Logistic regression models for binary panel data with attrition. J. R. Statist. Soc. A, 159, 249263.
  • Gladman, D. D. and Farewell, V. T. (1999) Progression in psoriatic arthritis: role of time varying clinical indicators. J. Rheum., 26, 24092413.
  • Gladman, D. D., Farewell, V. T. and Nadeau, C. (1994) Clinical indicators of progression in psoriatic arthritis: multivariate relative risk model. J. Rheum., 22, 675679.
  • Hanley, J. G., Russell, M. L. and Gladman, D. D. (1988) Psoriatic spondyloarthropathy: a long term prospective study. Ann. Rheum. Dis., 47, 386393.
  • Heitjan, D. F. and Rubin, D. B. (1991) Ignorability and coarse data. Ann. Statist., 19, 22442253.
  • Ihaka, R. and Gentleman, R. (1996) R: a language for data analysis and graphics. J. Computnl Graph. Statist., 5, 299314.
  • Liang, K. Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322.
  • Little, R. J. A. (1993) Pattern-mixture models for multivariate incomplete data. J. Am. Statist. Ass., 88, 125134.
  • McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
  • McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear, and Mixed Models. New York: Wiley.
  • Rubin, D. B. (1976) Inference and missing data. Biometrika, 63, 581592.
  • Shardell, M., Scharfstein, D. O. and Bozzette, A. (2007) Survival curve estimation for informatively coarsened discrete event-time data. Statist. Med., 26, 21842202.