SEARCH

SEARCH BY CITATION

References

  • Aboal, J. R., Real, C., Fernández, J. A. and Carballeira, A. (2006) Mapping the results of extensive surveys: the case of atmospheric biomonitoring and terrestrial mosses. Sci. Total Environ., 356, 256274.
  • Altham, P. M. E. (1984) Improving the precision of estimation by fitting a model. J. R. Statist. Soc. B, 46, 118119.
  • Chilès, J.-P. and Delfiner, P. (1999) Geostatistics. New York: Wiley.
  • Cox, D. R. and Hinkley, D. V. (1974) Theoretical Statistics. London: Chapman and Hall.
  • Cressie, N. A. C. (1985) Fitting variogram models by weighted least squares. J. Int. Ass. Math. Geol., 17, 563586.
  • Cressie, N. A. C. (1991) Statistics for Spatial Data. New York: Wiley.
  • Curriero, F. C., Hohn, M. E., Liebhold, A. M. and Lele, S. R. (2002) A statistical evaluation of non-ergodic variogram estimators. Environ. Ecol. Statist., 9, 89110.
  • Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns, 2nd edn. London: Arnold.
  • Diggle, P. J. and Gratton, R. J. (1984) Monte Carlo methods of inference for implicit statistical models (with discussion). J. R. Statist. Soc. B, 46, 193227.
  • Diggle, P. J. and Ribeiro, P. J. (2007) Model-based Geostatistics. New York: Springer.
  • Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998) Model-based geostatistics (with discussion). Appl. Statist., 47, 299350.
  • Eidsvik, J., Martino, S. and Rue, H. (2006) Approximate Bayesian inference in spatial generalized linear mixed models. Technical Report STATISTICS 2/2006. Norwegian University of Science and Technology, Trondheim.
  • Fernández, J. A., Real, C., Couto, J. A., Aboal, J. R. and Carballeira, A. (2005) The effect of sampling design on extensive bryomonitoring surveys of air pollution. Sci. Total Environ., 337, 1121.
  • Fernández, J. A., Rey, A. and Carballeira, A. (2000) An extended study of heavy metal deposition in Galicia (NW Spain) based on moss analysis. Sci. Total Environ., 254, 3144.
  • Guan, Y. and Afshartous, D. R. (2007) Test for independence between marks and points of marked point processes: a subsampling approach. Environ. Ecol. Statist., 14, 101111.
  • Henderson, R., Diggle, P. and Dobson, A. (2000) Joint modelling of measurements and event time data. Biostatistics, 1, 465480.
  • Ho, L. P. and Stoyan, D. (2008) Modelling marked point patterns by intensity-marked Cox processes. Statist. Probab. Lett., 78, 11941199.
  • Isaaks, E. H. and Srivastava, R. M. (1988) Spatial continuity measures for probabilistic and deterministic geostatistics. Math. Geol., 20, 313341.
  • Lin, H., Scharfstein, D. O. and Rosenheck, R. A. (2004) Analysis of longitudinal data with irregular, outcome-dependent follow-up. J. R. Statist. Soc. B, 66, 791813.
  • Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G., Gelber, R. and Lipshultz, S. (2002) Parameter estimation in longitudinal studies with outcome-dependent follow-up. Biometrics, 58, 621630.
  • Matérn, B. (1986) Spatial Variation, 2nd edn. Berlin: Springer.
  • McCullagh, P. (2008) Sampling bias and logistic models (with discussion). J. R. Statist. Soc. B, 70, 643677.
  • McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
  • Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox processes. Scand. J. Statist., 25, 451482.
  • Nelder, J. A. and Mead, R. (1965) A simplex method for function minimization. Comput. J., 7, 308313.
  • Rathbun, S. L. (1996) Estimation of Poisson intensity using partially observed concomitant variables. Biometrics, 52, 226242.
  • R Development Core Team (2008) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Ripley, B. D. (1977) Modelling spatial patterns (with discussion). J. R. Statist. Soc. B, 39, 172212.
  • Rue, H. and Held, L. (2005) Gaussian Markov Random Fields: Theory and Applications. London: Chapman and Hall.
  • Ruhling, A. (1994) Atmospheric Heavy Metal Deposition in Europe: Estimation Based on Moss Analysis. Helsinki: Nordic Council of Ministers.
  • Ryu, D., Sinha, D., Mallick, B., Lipsitz, S. R. and Lipshultz, S. E. (2007) Longitudinal studies with outcome-dependent follow-up: models and Bayesian regression. J. Am. Statist. Ass., 102, 952961.
  • Schlather, M. (2001) On the second-order characteristics of marked point processes. Bernoulli, 7, 99117.
  • Schlather, M., Ribeiro, Jr, P. J. and Diggle, P. J. (2004) Detecting dependence between marks and locations of marked point processes. J. R. Statist. Soc. B, 66, 7993.
  • Srivastava, R. M. and Parker, H. M. (1989) Robust measures of spatial continuity. In Geostatistics, vol. 1 (ed. M.Armstrong), pp. 295308. Boston: Kluwer.
  • Wälder, O. and Stoyan, D. (1996) On variograms of point process statistics. Biometr. J., 38, 895905.
  • Wood, A. T. A. and Chan, G. (1994) Simulation of stationary Gaussian processes in [0,1]d. J. Computnl Graph. Statist., 3, 409432.
  • Wulfsohn, M. S. and Tsiatis, A. A. (1997) A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330339.

References in the discussion