• Abate, J. and Whitt, W. (1999a) Computing Laplace transforms for numerical inversion via continued fractions. INFORMS J. Comput., 11, 394405.
  • Abate, J. and Whitt, W. (1999b) Modeling service-time distributions with non-exponential tails: beta mixtures of exponentials. Stoch. Mod., 15, 517546.
  • Abramowitz, M. and Stegun, I. A. (eds) (1984) . In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Wiley.
  • Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science, 286, 509512.
  • de Blasio, B. F., Svensson, A. and Liljeros, F. (2007) Preferential attachment in sexual networks. Proc. Natn. Acad. Sci. USA, 104, 1076210767.
  • Colgate, S., Stanley, E., Hyman, J., Layne, S. and Qualls, C. (1989) Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the united-states. Proc. Natn. Acad. Sci. USA, 86, 47934797.
  • Dorogovtsev, S. and Mendes, J. (2003) Evolution of Networks: from Biological Nets to the Internet and WWW. Oxford: Oxford University Press.
  • Dorogovtsev, S. N., Mendes, J. F. F. and Samukhin, A. N. (2000) Structure of growing networks with preferential linking. Phys. Rev. Lett., 85, 46334636.
  • Feller, W. (1968) An Introduction to Probability Theory and Its Applications, 3rd edn, vol. I. New York: Wiley.
  • Hamilton, D. T., Handcock, M. S. and Morris, M. (2008) Degree distributions in sexual networks: a framework of evaluating evidence. Sex. Transmttd Dis., 35, 3040.
  • Handcock, M. and Jones, J. (2004) Likelihood-based inference for stochastic models of sexual network formation. Theor. Popln Biol., 65, 413422.
  • Jeong, H., Néda, Z. and Barabási, A. L. (2003) Measuring preferential attachment in evolving networks. Eurphys. Lett., 61, 567572.
  • Jones, J. and Handcock, M. (2003) An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. Lond. B, 270, 11231128.
  • Krapivsky, P. L., Redner, S. and Leyvraz, F. (2000) Connectivity of growing random networks. Phys. Rev. Lett., 85, 46294632.
  • Liljeros, F., Edling, C. and Amaral, L. (2003) Sexual networks: implications for the transmission of sexually transmitted infections. Microb. Infectn, 5, 189196.
  • Liljeros, F., Edling, C., Amaral, L., Stanley, E. and Åberg, Y. (2001) The web of human sexual contacts. Nature, 411, 907908.
  • Miller, G. A. (1957) Some effects of intermittent silence. Am. J. Psychol., 70, 311314.
  • Newman, M. (2005) Power laws, pareto distributions and zipf's law. Contemp. Phys., 46, 323351.
  • Pearl, J. (2000) Models, reasoning, and inference. In Causality. Cambridge: Cambridge University Press.
  • Reed, W. J. and Hughes, B. D. (2002) From gene families and genera to incomes and internet file sizes: why power laws are so common in nature. Phys. Rev. E, 66, 067103.
  • Simon, H. A. (1955) On a class of skew distribution functions. Biometrika, 42, 425440.
  • de Solla Price, D. (1976) General theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inform. Sci., 27, 292306.
  • Stephen, A. T. and Toubia, O. (2009) Explaining the power-law degree distribution in a social commerce network. Socl Netwrks, 31, 262270.
  • Willis, J. (1922) Age and Area. Cambridge: Cambridge University Press.
  • Yule, G. U. (1925) A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B, 213, 2187.
  • Zipf, G. (1949) Human Behavior and the Principle of Least Effort: an Introduction to Human Ecology.Cambridge: Addison-Wesley.