SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (eds B. N.Petrov and F.Csáki), pp. 267281. Budapest: Akademiai Kiado.
  • Breau, A., Dupuis, J., Falls, K. and Lunetta, K. (2004) Identifying snps predictive of phenotype using random forests. Genet. Epidem., 28, 171182.
  • Breiman, L. (2001) Random forests. Mach. Learn., 45, 532.
  • Foulkes, A. S., De Gruttola, V. and Hertogs, K. (2004) Combining genotype groups and recursive partitioning: an application to human immunodeficiency virus type 1 genetics data. Appl. Statist., 53, 311323.
  • Foulkes, A., Reilly, M., Zhou, L., Wolfe, M. and Rader, D. (2005) Mixed modelling to characterize genotype-phenotype associations. Statist. Med., 24, 775789.
  • Foulkes, A., Wohl, D., Frank, I., Puleo, E., Restline, S., Wolfe, M., Dube, M. and Tebas, P. (2006) Associations among race/ethnicity, APOC-III genotypes and lipids in HIV-1 infected individuals on antiretroviral therapy. PLOS Med., 3.
  • Foulkes, A., Yucel, R. and Li, X. (2008) A likelihood-based approach to mixed modeling with ambiguity in cluster identifiers. Biostatistics, 9, 635657.
  • Foulkes A., Yucel, R. and Reilly, M. (2007) Mixed modelling and multiple imputation for unobservable genotype clusters. Statist. Med., 27, 27842801.
  • Fraley, C. and Raftery, A. (2002) MCLUST: software for model-based clustering density estimation and discriminant analysis. Technical Report 415. Department of Statistics, University of Washington, Seattle.
  • Goeman, J., van de Geer, S., de Kort, F. and van Houwelingen, H. (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics, 20, 9399.
  • Hoggart, C., Whittaker, J., De lorio, M. and Balding, D. (2008) Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLOS Genet., 4.
  • Komarek, A. (2001) A SAS-macro for linear mixed models with finite normal mixtures as random-effects distribution. Technical Report. Biostatistisch Centrum, Katholieke Universiteit Leuven, Leuven.
  • Lin, H., Wang, W., Liu, Y., Soong, S., York, T. and Myers, L. and Hu, J. (2008) Comparison of multivariate adaptive regression splines and logistic regression in detecting snpsnp interactions and their application in prostate cancer. J. Hum. Genet., 53, 802811.
  • Lunn, D., Whittaker, J. and Best, N. (2006) A bayesian toolkit for genetic association studies. Genet. Epidem., 30, 231247.
  • Magder, L. and Zeger, S. (1996) A smooth nonparametric estimate of a mixing distribution using mixtures of gaussians. J. Am. Statist. Ass., 91, 11411151.
  • McCulloch, C. and Searle, S. (2001) Generalized, Linear, and Mixed Models. New York: Wiley.
  • McLachlan, G. and Peel, D. (2000) Finite Mixture Models. New York: Wiley.
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and the R Core Team (2009) nlme: linear and nonlinear mixed effects models. R Package Version 3.1-93.
  • Price, A., Patterson, N., Plenge, R., Weinblatt, M., Shadick, N. and Reich, D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet., 38, 904909.
  • Roeder, K. (1994) A graphical technique for determining the number of components in a mixture of normals. J. Am. Statist. Ass., 89, 487495.
  • Ruczinski, I., Kooperberg, C. and LeBlanc, M. (2003) Logic regression. J. Computnl Graph. Statist., 12, 475511.
  • Schaid, D., Rowland, C., Tines, D., Jacobson, R. and Poland, G. (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet., 70, 425434.
  • Schumacher, F. and Kraft, P. (2007) A bayesian latent class analysis for whole-genome association analyses: an illustration using the gaw15 simulated rheumatoid arthritis dense scan data. BMC Proc., suppl 1.
  • Schwender, H. and Ickstadt, K. (2008) Identification of SNP interactions using logic regression. Biostatistics, 9, 187198.
  • Stram, D. and Lee, J. (1994) Variance components testing in the longitudinal mixed-effects models. Biometrics, 50, 11711177.
  • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267288.
  • Tzeng, J., Wang, C., Kao, J. and Hsiao, C. (2006) Regression-based association analysis with clustered haplotypes through use of genotypes. Am. J. Hum. Genet., 78, 231242.
  • Van Dyk, D. (2000) Fitting mixed-effects models using efficient EM-type algorithms. J. Computnl Graph. Statist., 9, 7898.
  • Verbeke, G. and Lesaffre, E. (1996) A linear mixed-effects model with heterogeneity in the random-effects population. J. Am. Statist. Ass., 91, 217221.
  • Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data. Berlin: Springer.
  • Yeung, K., Fraley, C., Murua, A., Raftery, A. and Ruzzo, W. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 977987.
  • Zeileis, A., Hothorn, T. and Hornik, K. (2008) Model-based recursive partitioning. J. Computnl Graph. Statist., 17, 492514.
  • Zhang, D. and Davidian, M. (2004) Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics, 57, 795802.