SEARCH

SEARCH BY CITATION

References

  • Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering. Englewood Cliffs: Prentice-Hall.
  • Ansley, C. F. and Kohn, R. (1985) Estimation, filtering and smoothing in state space models with incompletely specified initial conditions. Annals of Statistics 13, 1286316.
  • Ansley, C. F. and Kohn, R. (1990) Filtering and smoothing in state space models with partially diffuse initial conditions. Journal of Time Series Analysis 11, 27593.
  • Cooper, D. M. and Thompson, R. (1977) A note on the estimation of the parameters of the autoregressive-moving average process. Biometrika 64, 6258.
  • De Jong, P. (1988). The likelihood for a state-space model. Biometrika 75, 1659.
  • De Jong, P. (1991). The diffuse Kalman filter. The Annals of Statistics 2, 107383.
  • De Jong, P. and Chu-Chun Lin, S. (1994). Stationary and non-stationary state space models. Journal of Time Series Analysis 15, 15166.
  • Durbin, J. and Koopman, S. J. (2001). Times Series Analysis by State Space Methods. Oxford: Oxford University Press.
  • Francke, M. K. and De Vos, A. F. (2007). Marginal likelihood and unit roots. Journal of Econometrics 137, 70828.
  • Harvey, A. C. (1989). Forecasting Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press.
  • Harville, D. A. (1974). Bayesian inference for variance components using only error contrast. Biometrika 61, 38385.
  • Kalbfleisch, J. D. and Sprott, D. A. (1970). Application of likelihood methods to models involving large numbers of parameters. Journal of the Royal Statistical Society B 32, 175208.
  • King, M. L. (1980). Robust tests for spherical symmetry and their application to least squares regression. The Annals of Statistics 8, 126571.
  • Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series models. Journal of the American Statistical Assocation 92, 16308.
  • Kuo, B. S. (1999). Asymptotics of ML estimator for regression models with a stochastic trend component. Econometric Theory 15, 249.
  • Levenbach, H. (1972). Estimation of autoregressive parameters from a marginal likelihood function. Biometrika 59, 6171.
  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd edn. London: Chapman & Hall.
  • Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 54554.
  • Rahman, S. and King, M. L. (1997). Marginal-likelihood score-based tests of regression disturbances in the presence of nuisance parameters. Journal of Econometrics 82, 81106.
  • Rosenberg, B. (1973). Random coefficients models: the analysis of a cross-section of time series by stochastically convergent parameter regression. Annals of Economic and Social Measurement 2, 399428.
  • Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory 11, 6170.
  • Shephard, N. (1993). Maximum likelihood estimation of regression models with stochastic trend components. Journal of the American Statistical Association 88, 5905.
  • Shephard, N. and Harvey, A. C. (1990). On the probability of estimating a deterministic component in the local level model. Journal of Time Series Analysis 11, 33947.
  • Smyth, G. K. and Verbyla, A. P. (1996). A conditional likelihood approach to REML in generalized linear models. Journal of the Royal Statistical Society B 58, 56572.
  • Tunnicliffe-Wilson, G. (1989). On the use of marginal likelihood in time series model estimation. Journal of the Royal Statistical Society B 51, 1527.