• Adler, T. and Kritzman, M. (2007). ‘Mean–Variance versus Full-scale Optimisation: In and Out of Sample’, Journal of Asset Management, Vol. 7, No. 5, pp. 302311.
  • Bai, J. and Ng, S. (2005). ‘Tests for Skewness, Kurtosis, and Normality for Time Series Data’, Journal of Business and Economic Statistics, Vol. 23, No. 1, pp. 4961.
  • Cremers, J., Kritzman, M. and Page, S. (2003). ‘Portfolio Formation with Higher Moments and Plausible Utility’, Technical Report, Revere Street Working Paper Series, Financial Economics 272-212.
  • Cremers, J. H., Kritzman, M. and Page, S. (2005). ‘Optimal Hedge Fund Allocations’, Journal of Portfolio Management, Vol. 31, No. 3, pp. 7081.
  • Cuthbertson, K. and Nitzsche, D. (2004). Quantitative Financial Economics: Stocks, Bonds and, Foreign Exchange, New York, Wiley.
  • Epp, S. S. (2003). Discrete Mathematics with Applications, 3rd edn, Belmont, CA, Brooks/Cole Wadsworth.
  • Goffe, W., Ferrier, G. and Rogers, J. (1994). ‘Global Optimization of Statistical Functions with Simulated Annealing’, Journal of Econometrics, Vol. 60, Nos 1/2, pp. 65100.
  • Gourieroux, C. and Monfort, A. (2005). ‘The Econometrics of Efficient Portfolios’, Journal of Empirical Finance, Vol. 12, pp. 141.
  • Grinold, R. (1999). ‘Mean–Variance and Scenario-based Approaches to Portfolio Selection’, Journal of Portfolio Management, Vol. 25, No. 2, pp. 1022.
  • Harvey, C., Liechty, J., Liechty, M. and Muller, P. (2003). ‘Portfolio Selection with Higher Moments’, Technical Report, Working Paper, Duke University.
  • Jarque, C. and Bera, A. (1980). ‘Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals’, Economics Letters, Vol. 6, No. 3, pp. 255259.
  • Kahnemann, D. and Tversky, A. (1979). ‘Prospect Theory: an Analysis of Decision under Risk’, Econometrica, Vol. 47, No. 2, pp. 263291.
  • Levy, H. (1969). ‘A Utility Function Depending on the First Three Moments’, Journal of Finance, Vol. 24, No. 4, pp. 715719.
  • Levy, H. and Markowitz, H. (1979). ‘Approximating Expected Utility by a Function of Mean and Variance’, American Economic Review, Vol. 69, No. 3, pp. 308317.
  • Litterman, R. (2003). Modern Investment Management: an Equilibrium Approach, New York, Wiley.
  • Mandelbrot, B. (1963). ‘The Variation of Certain Speculative Prices’, Journal of Business, Vol. 36, No. 4, pp. 394419.
  • Maringer, D. (2008). ‘Risk Preferences and Loss Aversion in Portfolio Optimization’, in E.Kontoghiorghes, B.Rustem and P. Winker (eds), Computational Methods in Financial Engineering, Berlin, Springer.
  • Markowitz, H. (1952). ‘Portfolio Selection’, Journal of Finance, Vol. 7, No. 1, pp. 7791.
  • Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments, New Haven, CT, Yale University Press.
  • Markowitz, H. (1987). Mean–Variance Analysis in Portfolio Choice and Capital Markets, Oxford, Basil Blackwell.
  • Meucci, A. (2005). Risk and Asset Allocation, Berlin, Springer.
  • Samuelson, P. (1970). ‘The Fundamental Approximation Theorem of Portfolio Analysis in Terms of Means, Variances and Higher Moments’, Review of Economic Studies, Vol. 37, No. 4, pp. 537542.
  • Scott, R. and Horvath, P. (1980). ‘On the Direction of Preference for Moments of Higher Order than the Variance’, Journal of Finance, Vol. 35, No. 4, pp. 915919.
  • Sharpe, W. F. (2007). ‘Expected Utility Asset Allocation’, Financial Analyst Journal, Vol. 63, No. 5, pp. 1830.
  • Tobin, J. (1958). ‘Liquidity Preference as Behavior towards Risk’, Review of Economic Studies, Vol. 25, No. 2, pp. 6586.
  • Von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economic Behavior, Princeton, NJ, Princeton University Press.