SEARCH

SEARCH BY CITATION

REFERENCES

  • Ahn, S. K. and Reinsel, G. C. (1987). ‘Estimation for Partially Non-stationary Multivariate Autoregressive Models’, University of Wisconsin.
  • Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. New York, Wiley.
  • Box, G. E. P. and Tiao, G. C. (1981). ‘A Canonical Analysis of Multiple Time Series with Applications’, Biometrika, Vol. 64, pp. 35565.
  • Davidson, J. (1986). ‘Cointegration in Linear Dynamic Systems’, Discussion paper, LSE.
  • Dolado, J. J. and Jenkinson, T. (1988). ‘Cointegration: A Survey of Recent Developments’, Mimeo, Institute of Economics and Statistics, Oxford University.
  • Engle, R. F. and Granger, C. W. J. (1987). ‘Co-integration and Error Correction: Representation, Estimation and Testing’, Econometrica, Vol. 55, pp. 25176.
  • Fuller, W. A. (1976). Introduction to Statistical Time Series, New York, Wiley.
  • Granger, C. W. J. (1981). ‘Some Properties of Time Series Data and their Use in Econometric Model Specification’, Journal of Econometrics, Vol. 16, pp. 12130.
  • Granger, C. W. J. and Weiss, A. A. (1983). ‘Time Series Analysis of Error Correction Models’, in Studies in Econometrics, Time Series and Multivariate Statistics, in Karlin, S., Amemiya, T. and Goodman, L. A. (eds.), New York, Academic Press, pp. 25578.
  • Jarque, C. M. and Bera, A. K. (1980). ‘Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals’, Economic Letters, Vol. 6, pp. 25559.
  • Jeganathan, P. (1988). ‘Some Aspects of Asymptotic Theory with Applications to Time Series Models’, Technical Report The University of Michigan.
  • Johansen, S. (1988a). ‘The Mathematical Structure of Error Correction Models’, Contemporary Mathematics, American Mathematical Society, Vol. 80, pp. 35986.
  • Johansen, S. (1988b). ‘Statistical Analysis of Cointegration Vectors’, Journal of Economic Dynamics and Control, Vol. 12, pp. 23154.
  • Johansen, S. (1989). ‘Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models’, forthcoming, Econometrica.
  • Johansen, S. and Juselius, K. (1988). ‘Hypothesis Testing for Cointegration Vectors — With an Application to the Demand for Money in Denmark and Finland’, Preprint University of Copenhagen.
  • Laidler, D. E. W. (1985). ‘The Demand for Money’, Oxford, Philip Allan.
  • Pena, D. and Box, G. E. P. (1987). ‘Identifying a Simplifying Structure in Time Series’, Journal of the American Statistical Association, Vol. 82, pp. 83643.
  • Phillips, P. C. B. (1987). ‘Multiple Regression with Integrated Time Series’, Cowles Foundation discussion paper No. 852.
  • Phillips, P. C. B. (1988). ‘Optimal Inference in Cointegrated Systems’, Cowles Foundation discussion paper No. 866.
  • Phillips, P. C. B. and Durlauf, S. N. (1986). ‘Multiple Time Series Regression with Integrated Processes’, Review of Economic Studies, Vol. 53, pp. 47395.
  • Phillips, P. C. B. and Ouliaris, S. (1986). ‘Testing for Cointegration’, Cowles Foundation discussion paper No. 809.
  • Phillips, P. C. B. and Ouliaris, S. (1987). ‘Asymptotic Properties of Residual Based Tests for Cointegration’, Cowles Foundation discussion paper No. 847.
  • Phillips, P. C. B. and Park, J. Y. (1986a). ‘Asymptotic Equivalence of OLS and GLS in Regression with Integrated Regressors’, Cowles Foundation discussion paper No. 802.
  • Phillips, P. C. B. and Park, J. Y. (1988). ‘Statistical Inference in Regressions with Integrated Processes. Part 1’, Econometric Theory, Vol. 4, pp. 46897.
  • Phillips, P. C. B. and Park, J. Y. (1989). ‘Statistical Inference in Regressions with Integrated Processes. Part 2’, Econometric Theory, Vol. 3, pp. 95131.
  • Sims, A., Stock, J. H. and Watson, M. W. (1986). ‘Inference in Linear Time Series Models with some Unit Roots’, Preprint.
  • Stock, J. H. (1987). ‘Asymptotic Properties of Least Squares Estimates of Cointegration Vectors’, Econometrica, Vol. 55, pp. 103556.
  • Stock, J. H. and Watson, M. W. (1988). ‘Testing for Common Trends’, Journal of the American Statistical Association, Vol. 83, pp. 10971107.
  • Tso, M. K.-S. (1981). ‘Reduced-rank Regression and Canonical Analysis’, Journal of the Royal Statisical Society B, Vol. 43, pp. 18389.
  • Velu, R. P., Reinsel, G. C. and Wichern, D. W. (1986). ‘Reduced Rank Models for Multiple Time Series’, Biometrika, Vol. 73, pp. 10518.
  • Velu, R. P., Wichern, D. W. and Reinsel, G. C. (1987). ‘A Note on Non-stationary and Canonical Analysis of Multiple Time Series Models’, Journal of Time Series Analysis, Vol. 8, pp. 47987.
  • West, D. D. (1989). ‘Asymptotic Normality when Regressors Have a Unit Root’, forthcoming Econometrica.