SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1973). ‘Information theory and an extension of the maximum likelihood principle’, in PetrovB. N. and CsakiF. (eds), Second International Symposion on Information Theory, Akademia Kiado, Budapest, pp. 267281.
  • Akaike, H. (1985). ‘Prediction and entropy’, in AtkinsonA. C. and FienbergS. E. (eds), A Celebration of Statistics, Springer-Verlag, New York, pp. 124.
  • Albert, J. and Chib, S. (1993). ‘Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts’, Journal of Business and Economic Statistics, Vol. 11, pp. 116.
  • Amstad, M. and Fischer, A. M. (2004). Sequential Information Flow and Real-Time Diagnosis of Swiss Inflation: Intra-monthly DCF Estimates for a Low-inflation Environment, Working Paper, 04.06, Swiss National Bank, Frankfurt.
  • Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2003). ‘Modelling and forecasting realized volatility’, Econometrica, Vol. 71, pp. 579625.
  • Bao, Y., Lee, T.-H. and Saltoğlu, B. (2004). A Test for Density Forecast Comparison with Applications to Risk Management, mimeo, UC Riverside.
  • Barnett, W. A., Hendry, D. F., Hylleberg, S., Teräsvirta, T., Tjøstheim, D. and Würtz, A. (eds) (2000). Nonlinear Econometric Modeling in Time Series Analysis, Cambridge University Press, Cambridge.
  • Bates, J. M. and Granger, C. W. J. (1969). ‘The combination of forecasts’, Operations Research Quarterly, Vol. 20, pp. 451468. Reprinted in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • Bhansali, R. J. (1996). ‘Asymptotically efficient autoregressive model selection for multistep prediction’, Annals of Institute of Statistical Mathematics, Vol. 48, pp. 94134.
  • Bhansali, R. J. (1997). ‘Direct autoregressive predictors for multistep prediction: order selection and performance relative to the plug-in predictors’, Statistica Sinica, Vol. 7, pp. 425449.
  • Bhansali, R. J. (1999). ‘Parameter estimation and model selection for multistep prediction of time series: a review’, in GoshS. (ed.), Asymptotics, Nonparametrics and Time Series, Marcel Dekker, New York, pp. 201225.
  • Bollerslev, T. (1986). ‘Generalised autoregressive conditional heteroskedasticity’, Journal of Econometrics, Vol. 51, pp. 307327.
  • Bontemps, C. and Mizon, G. E. (2003). ‘Congruence and encompassing’, in StigumB. P. (ed.), Econometrics and the Philosophy of Economics, Princeton University Press, Princeton, NJ, pp. 354378.
  • Cairncross, A. (1969). ‘Economic forecasting’, Economic Journal, Vol. 79, pp. 797812. Reprinted in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • Campos, J., Hendry, D. F. and Krolzig, H.-M. (2003). ‘Consistent model selection by an automatic Gets approach’, Oxford Bulletin of Economics and Statistics, Vol. 65, pp. 803819.
  • Chevillon, G. and Hendry, D. F. (2005). ‘Non-parametric direct multi-step estimation for forecasting economic processes’, International Journal of Forecasting, Vol. 21, pp. 201218.
  • Chong, Y. Y. and Hendry, D. F. (1986). ‘Econometric evaluation of linear macro-economic models’, Review of Economic Studies, Vol. 53, pp. 671690. Reprinted in GrangerC. W. J. (ed.), Modelling Economic Series, Clarendon Press, Oxford, 1990; and in CamposJ., EricssonN. R. and HendryD. F. (eds), General to Specific Modelling, Edward Elgar, Cheltenham, 2005.
  • Clemen, R. T. (1989). ‘Combining forecasts: a review and annotated bibliography’, International Journal of Forecasting, Vol. 5, pp. 559583. Reprinted in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • Clements, M. P. (2004). ‘Evaluating the Bank of England density forecasts of inflation’, Economic Journal, Vol. 114, pp. 855877.
  • Clements, M. P. and Galvão, A. B. (2005a). ‘Combining predictors and combining information in modelling: Forecasting US recession probabilities and output growth’, in MilasC., RothmanP. and vanDijkD. (eds), Nonlinear Time Series Analysis of Business Cycles. Contributions to Economic Analysis Series, Elsevier, Amsterdam, forthcoming.
  • Clements, M. P. and Galvão, A. B. (2005b). Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth, Working Paper, Department of Economics, University of Warwick.
  • Clements, M. P. and Hendry, D. F. (1993a). ‘On the limitations of comparing mean squared forecast errors (with discussion)’, Journal of Forecasting, Vol. 12, pp. 617637. Reprinted in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • Clements, M. P. and Hendry, D. F. (1993b). ‘On the limitations of comparing mean squared forecast errors: a reply’, Journal of Forecasting, Vol. 12, pp. 669676.
  • Clements, M. P. and Hendry, D. F. (1996a). ‘Forecasting in macro-economics’, in CoxD. R., HinkleyD. V. and Barndorff-NielsenO. E. (eds), Time Series Models: In Econometrics, Finance and other Fields, Chapman and Hall, London. pp. 101141.
  • Clements, M. P. and Hendry, D. F. (1996b). ‘Multi-step estimation for forecasting’, Oxford Bulletin of Economics and Statistics, Vol. 58, pp. 657683.
  • Clements, M. P. and Hendry, D. F. (1998). Forecasting Economic Time Series, Cambridge University Press, Cambridge.
  • Clements, M. P. and Hendry, D. F. (1999). Forecasting Non-stationary Economic Time Series, MIT Press, Cambridge, MA.
  • Clements, M. P. and Hendry, D. F. (2001). ‘Explaining the results of the M3 forecasting competition’, International Journal of Forecasting, Vol. 17, pp. 550554.
  • Clements, M. P. and Hendry, D. F. (eds) (2002a). A Companion to Economic Forecasting, Blackwell, Oxford.
  • Clements, M. P. and Hendry, D. F. (2002b). ‘Explaining forecast failure in macroeconomics’, in ClementsM. P. and HendryD. F. (eds), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 539571.
  • Clements, M. P. and Hendry, D. F. (2002c). ‘Modelling methodology and forecast failure’, The Econometrics Journal, Vol. 5, pp. 319344.
  • Clements, M. P. and Hendry, D. F. (2003). Report of a Scoping Study of Forecasting in the National Accounts at the Office for National Statistics, Discussion paper, Statistics Commission.
  • Clements, M. P. and Hendry, D. F. (2005). ‘Forecasting with breaks’, in ElliotG., GrangerC. and TimmermannA. (eds), Handbook of Economic Forecasting. Elsevier, Amsterdam, forthcoming.
  • Clements, M. P., Franses, P. F. and Swanson, N. (2004). ‘Forecasting economic and financial time-series with non-linear models’, International Journal of Forecasting, Vol. 20, pp. 169183.
  • Corradi, V. and Swanson, N. R. (2005). ‘Evaluation of dynamic stochastic general equilibrium models based on distributional comparison of simulated and historic data’, Journal of Econometrics, forthcoming.
  • Davidson, J. E. H., Hendry, D. F., Srba, F. and Yeo, J. S. (1978). ‘Econometric modelling of the aggregate time-series relationship between consumers’ expenditure and income in the United Kingdom’, Economic Journal, Vol. 88, pp. 661692. Reprinted in HendryD. F. (ed.), Econometrics: Alchemy or Science? Blackwell, Oxford, 1993, and Oxford University Press, Oxford, 2000; and in CamposJ., EricssonN. R. and HendryD. F. (eds), General to Specific Modelling, Edward Elgar, Cheltenham, 2005.
  • Diebold, F. X. and Lopez, J. A. (1996). ‘Forecast evaluation and combination’, in MaddalaG. S. and RaoC. R. (eds), Handbook of Statistics, North–Holland, Amsterdam, Vol. 14, pp. 241268.
  • Diebold, F. X. and Pauly, R. (1987). ‘Structural change and the combination of forecasts’, Journal of Forecasting, Vol. 6, pp. 2140.
  • Diebold, F. X., Lee, J. H. and Weinbach, G. C. (1994). ‘Regime switching with time-varying transition probabilities’, in HargreavesC. (ed.), Non-stationary Time-series Analyses and Cointegration, Oxford University Press, Oxford, pp. 283302.
  • Engle, R. F. (1982). ‘Autoregressive conditional heteroscedasticity, with estimates of the variance of United Kingdom inflation’, Econometrica, Vol. 50, pp. 9871007.
  • Ericsson, N. R. (2002). ‘Predictable uncertainty’, in ClementsM. P. and HendryD. F. (eds), A Companion to Economic Forecasting, Blackwells, Oxford, pp. 1944.
  • Espasa, A., Senra, E. and Albacete, R. (2002). ‘Forecasting inflation in the European Monetary Union: A disaggregated approach by countries and by sectors’, European Journal of Finance, Vol. 8, pp. 402421.
  • Fildes, R. and Ord, K. (2002). ‘Forecasting competitions – their role in improving forecasting practice and research’, in Clements, M. P. and Hendry, D. F. (eds), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 322353.
  • Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000). ‘The generalized factor model: Identification and estimation’, Review of Economics and Statistics, Vol. 82, pp. 540554.
  • Ghysels, E., Santa-Clara, P., Sinko, A. and Valkanov, R. (2004a). MIDAS Regressions: Further Results and New Directions, mimeo, Chapel Hill, NC.
  • Ghysels, E., Santa-Clara, P. and Valkanov, R. (2004b). The MIDAS Touch: Mixed Data Sampling Regression Models, mimeo, Chapel Hill, NC.
  • Giacomini, R. and White, H. (2004). Tests of Conditional Predictive Ability, Working Paper, Economics Department, University of California, San Diego.
  • Goodwin, T. H. (1993). ‘Business-cycle analysis with a Markov-switching model’, Journal of Business and Economic Statistics, Vol. 11, pp. 331339.
  • Granger, C. W. J. (1989). ‘Combining forecasts – twenty years later’, Journal of Forecasting, Vol. 8, pp. 167173.
  • Granger, C. W. J. and Pesaran, M. H. (2000a). ‘A decision-theoretic approach to forecast evaluation’, in ChonW. S., LiW. K. and TongH. (eds), Statistics and Finance: An Interface, Imperial College Press, London, pp. 261278.
  • Granger, C. W. J. and Pesaran, M. H. (2000b). ‘Economic and statistical measures of forecasting accuracy’, Journal of Forecasting, Vol. 19, pp. 537560.
  • Haavelmo, T. (1944). ‘The probability approach in econometrics’, Econometrica, Vol. 12, pp. 1118, supplement.
  • Hall, R. E. (1978). ‘Stochastic implications of the life cycle-permanent income hypothesis: Evidence’, Journal of Political Economy, Vol. 86, pp. 971987.
  • Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton, NJ.
  • Hamilton, J. D. and Raj, B. (eds) (2002). Advances in Markov-Switching Models. Applications in Business Cycle Research and Finance, Physica-Verlag, New York.
  • Hendry, D. F. (1995). Dynamic Econometrics, Oxford University Press, Oxford.
  • Hendry, D. F. (1997). ‘The econometrics of macroeconomic forecasting’, Economic Journal, Vol. 107, pp. 13301357. Reprinted in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • Hendry, D. F. (2000). ‘On detectable and non-detectable structural change’, Structural Change and Economic Dynamics, Vol. 11, pp. 4565. Reprinted in HagemannH., LandesmanM. and ScazzieriR. (eds), The Economics of Structural Change, Edward Elgar, Cheltenham, 2002.
  • Hendry, D. F. (2005). ‘Robustifying forecasts from equilibrium-correction models’, forthcoming, Special Issue in Honor of Clive Granger, Journal of Econometrics.
  • Hendry, D. F. and Clements, M. P. (2003). ‘Economic forecasting: some lessons from recent research’, Economic Modelling, Vol. 20, pp. 301329, European Central Bank, Working Paper 82.
  • Hendry, D. F. and Clements, M. P. (2004). ‘Pooling of forecasts’, Econometrics Journal, Vol. 7, pp. 131.
  • Hendry, D. F. and Doornik, J. A. (1997). ‘The implications for econometric modelling of forecast failure’, Scottish Journal of Political Economy, Vol. 44, pp. 437461, Special Issue.
  • Hendry, D. F. and Hubrich, K. (2004). Forecasting Aggregates by Disaggregates, Discussion Paper, Research Department, European Central Bank.
  • Hendry, D. F. and Massmann, M. (2005). Co-breaking: Recent Advances and a Synopsis of the Literature, Mimeo, Economics Department, Oxford University.
  • Hendry, D. F. and Mizon, G. E. (2000). ‘On selecting policy analysis models by forecast accuracy’, in AtkinsonA. B., GlennersterH. and SternN. (eds), Putting Economics to Work: Volume in Honour of Michio Morishima, STICERD, London School of Economics, pp. 71113.
  • Hendry, D. F. and Mizon, G. E. (2005). ‘Forecasting in the presence of structural breaks and policy regime shifts’, in AndrewsD. W., PowellJ. L., RuudP. A. and StockJ. (eds), Identification and Inference for Econometric Models: Essays in Honor of T. J. Rothenberg, Cambridge University Press, Cambridge, pp. 480502.
  • Hendry, D. F. and von Ungern-Sternberg, T. (1981). ‘Liquidity and inflation effects on consumers’ expenditure’, in DeatonA. S. (ed.), Essays in the Theory and Measurement of Consumers’ Behaviour, Cambridge University Press, Cambridge, pp. 237261. Reprinted in HendryD. F. (ed.), Econometrics: Alchemy or Science? Blackwell, Oxford, 1993, and Oxford University Press, Oxford, 2000.
  • Hoover, K. D. and Perez, S. J. (1999). ‘Data mining reconsidered: encompassing and the general-to-specific approach to specification search’, Econometrics Journal, Vol. 2, pp. 167191.
  • Hubrich, K. (2005). ‘Forecasting Euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?’, International Journal of Forecasting, Vol. 21, pp. 119136.
  • Kim, C. J. (1994). ‘Dynamic linear models with Markov-switching’, Journal of Econometrics, Vol. 60, pp. 122.
  • Kim, S., Shephard, N. and Chib, S. (1998). ‘Stochastic volatility: likelihood inference and comparison with ARCH models’, Review of Economic Studies, Vol. 65, pp. 361393.
    Direct Link:
  • Koopmans, T. C. (1937). Linear Regression Analysis of Economic Time Series, Netherlands Economic Institute, Haarlem.
  • Krolzig, H.-M. (1997). Markov Switching Vector Autoregressions: Modelling, Statistical Inference and Application to Business Cycle Analysis, Lecture Notes in Economics and Mathematical Systems, 454. Springer-Verlag, Berlin.
  • Krolzig, H.-M. and Lütkepohl, H. (1995). ‘Konjunkturanalyse mit Markov–Regimewechselmodellen’, in OppenländerK. H. (ed.), Konjunkturindikatoren. Fakten, Analysen, Verwendung, München Wien, Oldenbourg, pp. 177196.
  • Lam, P.-S. (1990). ‘The Hamilton model with a general autoregressive component. Estimation and comparison with other models of economic time series’, Journal of Monetary Economics, Vol. 26, pp. 409432.
  • Leitch, G. and Tanner, J. E. (1991). ‘Economic forecast evaluation: profits versus the conventional error measures’, American Economic Review, Vol. 81, pp. 580590. Reprinted in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • Makridakis, S. and Hibon, M. (2000). ‘The M3-competition: results, conclusions and implications’, International Journal of Forecasting, Vol. 16, pp. 451476.
  • Marget, A. W. (1929). ‘Morgenstern on the methodology of economic forecasting’, Journal of Political Economy, Vol. 37, pp. 312339. Reprinted in HendryD. F. and MorganM. S., The Foundations of Econometric Analysis, Cambridge University Press, Cambridge, 1995, and in MillsT. C. (ed.), Economic Forecasting, Edward Elgar, Cheltenham, 1999.
  • McCulloch, R. E. and Tsay, R. S. (1994). ‘Bayesian analysis of autoregressive time series via the Gibbs sampler’, Journal of Time Series Analysis, Vol. 15, pp. 235250.
  • Melino, A. and Turnbull, S. M. (1990). ‘Pricing foreign currency options with stochastic volatility’, Journal of Econometrics, Vol. 45, pp. 239265.
  • Mills, T. C. (ed.) (1999). Economic Forecasting, Edward Elgar, Cheltenham, UK, 2 vols.
  • Morgenstern, O. (1928). Wirtschaftsprognose: eine Untersuchung ihrer Voraussetzungen und Möglichkeiten, Julius Springer, Vienna.
  • Newbold, P. and Harvey, D. I. (2002). ‘Forecasting combination and encompassing’, in ClementsM. P. and HendryD. F. (eds), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 268283.
  • Persons, W. M. (1924). The Problem of Business Forecasting, Pollak Foundation for Economic Research Publications, No. 6, Pitman, London.
  • Pesaran, M. H. and Skouras, S. (2002). ‘Decision-based methods for forecast evaluation’, in ClementsM. P. and HendryD. F. (eds) (2002a), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 241267.
  • Phillips, K. (1991). ‘A two-country model of stochastic output with changes in regime’, Journal of International Economics, Vol. 31, pp. 121142.
  • Phillips, P. C. B. (1994). ‘Bayes models and forecasts of Australian macroeconomic time series’, in HargreavesC. (ed.), Non-stationary Time-Series Analyses and Cointegration, Oxford University Press, Oxford, pp. 5386.
  • Phillips, P. C. B. (1995). ‘Automated forecasts of Asia-Pacific economic activity’, Asia-Pacific Economic Review, Vol. 1, pp. 92102.
  • Phillips, P. C. B. (1996). ‘Econometric model determination’, Econometrica, Vol. 64, pp. 763812.
  • Phillips, P. C. B. (2003). ‘Laws and limits of econometrics’, Economic Journal, Vol. 113, pp. C26C52.
  • Potter, S. (1995). ‘A nonlinear approach to US GNP’, Journal of Applied Econometrics, Vol. 10, pp. 109125.
  • Schweppe, F. (1965). ‘Evaluation of likelihood functions for Gaussian signals’, IEEE Transactions on Information Theory, Vol. 11, pp. 6170.
  • Shephard, N. (1996). ‘Statistical aspects of ARCH and stochastic volatility’, in CoxD. R., HinkleyD. V. and Barndorff-NielsenO. E. (eds), Time Series Models: In Econometrics, Finance and other Fields, Chapman and Hall, London, pp. 167.
  • Stock, J. H. and Watson, M. W. (1999). ‘A comparison of linear and nonlinear models for forecasting macroeconomic time series’, in EngleR. F. and WhiteH. (eds), Cointegration, Causality and Forecasting, Oxford University Press, Oxford, pp. 144.
  • Stock, J. H. and Watson, M. W. (2002). ‘Macroeconomic forecasting using diffusion indices’, Journal of Business and Economic Statistics, Vol. 20, pp. 147162.
  • Stock, J. H. and Watson, M. W. (2003). ‘How did leading indicator forecasts perform during the 2001 recession’, Federal Reserve Bank of Richmond, Economic Quarterly, Vol. 89/3, pp. 7190.
  • Surowiecki, J. (2004). The Wisdom of Crowds, Doubleday, New York.
  • Tay, A. S. and Wallis, K. F. (2000). ‘Density forecasting: a survey’, Journal of Forecasting, Vol. 19, pp. 235254. Reprinted in ClementsM. P. and HendryD. F. (eds), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 4568, 2002.
  • Taylor, S. J. (1986). Modelling Financial Time Series, John Wiley, Chichester.
  • Tiao, G. C. and Tsay, R. S. (1994). ‘Some advances in non-linear and adaptive modelling in time-series’, Journal of Forecasting, Vol. 13, pp. 109131.
  • West, K. D. (1996). ‘Asymptotic inference about predictive ability’, Econometrica, Vol. 64, pp. 10671084.
  • West, K. D. (2001). ‘Tests for forecast encompassing when forecasts depend on estimated regression parameters’, Journal of Business and Economic Statistics, Vol. 19, pp. 2933.
  • West, K. D. and McCracken, M. W. (1998). ‘Regression-based tests of predictive ability’, International Economic Review, Vol. 39, pp. 817840.
  • West, K. D. and McCracken, M. W. (2002). ‘Inference about predictive ability’, in ClementsM. P. and HendryD. F. (eds), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 299321.