SEARCH

SEARCH BY CITATION

REFERENCES

  • Armstrong, D. M. (1980). The Nature of Mind. Ithaca, NY: Cornell University Press.
  • Armstrong, D. M. (1993). A Materialist Theory of Mind. London: Routledge.
  • Ayer, A. J. (1946). Language, Truth, and Logic. New York: Dover.
  • Baker, A. (2001). “Mathematics, Indispensability, and Scientific Progress,” Erkenntnis 55, pp. 85116.
  • BonJour, L. (1985). The Structure of Empirical Justification. Cambridge, MA: Harvard University Press.
  • BonJour, L. (1998). In Defense of Pure Reason. Cambridge: Cambridge University Press.
  • BonJour, L. (2000). “Toward a Defense of Empirical Foundationalism,” in M. R.Depaul (ed.) Resurrecting Old-Fashioned Foundationalism. Lanham, MD: Rowman & Littlefield, pp. 2138.
  • BonJour, L. and Sosa, E. (2003). Epistemic Justification: Internalism vs. Externalism, Foundations vs. Virtues. Oxford: Blackwell Publishing.
  • Boolos, G. (1998). “Must We Believe in Set Theory?” in R.Jeffrey (ed.) Logic, Logic, and Logic. Cambridge, MA: Harvard University Press, pp. 120131.
  • Boyd, R. (1988). “How to be a Moral Realist,” in G.Sayre-McCord (ed.) Essays on Moral Realism. Ithaca, NY: Cornell University Press, pp. 181228.
  • Brouwer, L. E. J. (1912). “Intuitionism and Formalism,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 7789.
  • Brouwer, L. E. J. (1948). “Consciousness, Philosophy and Mathematics,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 9096.
  • Brouwer, L. E. J. (1952). “Historical Background, Principles and Methods of Intuitionism,” South African Journal of Science 49, pp. 139146.
  • Burgess, J. P. (1990). “Epistemology and Nominalism,” in A. D.Irvine (ed.) Physicalism in Mathematics. Dordrecht: Kluwer Academic Publishers, pp. 116.
  • Burgess, J. P. (1998). “Occam's Razor and Scientific Method,” in M.Schirn (ed.) The Philosophy of Mathematics Today. Oxford: Oxford University Press, pp. 195214.
  • Burgess, J. P. (2005). Fixing Frege. Princeton: Princeton University Press.
  • Burgess, J. P. and Rosen, G. (1997). A Subject With No Object. Oxford: Oxford University Press.
  • Carnap, R. (1931). “The Logicist Foundations of Mathematics,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 4152.
  • Carnap, R. (1937). The Logical Syntax of Language, A. Seaton, trans. London: Routledge & Kegan Paul.
  • Carnap, R. (1950/56). “Empiricism, Semantics, and Ontology,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 241257.
  • Colyvan, M. (2001). The Indispensability of Mathematics. Oxford: Oxford University Press.
  • Colyvan, M. (2007). “Mathematical Recreation Versus Mathematical Knowledge,” in M. P.Leng, A.Paseau and M.Potter (eds) Mathematical Knowledge. Oxford: Oxford University Press, pp. 109122.
  • Dieterle, J. (1999). “Mathematical, Astrological, and Theological Naturalism,” Philosophia Mathematica 7, pp. 129135.
  • Dummett, M. (1973). “The Philosophical Basis of Intuitionistic Logic,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 97129.
  • Dummett, M. (1977). Elements of Intuitionism. Oxford: Oxford University Press.
  • Emch, G. G. (1972). Algebraic Methods in Statistical Mechanics and Quantum Field Theory. New York: John Wiley & Sons.
  • Feferman, S. (1988). “Weyl Vindicated,” In Light of Logic, Oxford: Oxford University Press, pp. 249283. Includes 1996 postscript.
  • Feferman, S. (1992). “Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics,” in In the Light of Logic. Oxford: Oxford University Press, pp. 284298.
  • Feferman, S. (1998). In the Light of Logic. Oxford: Oxford University Press.
  • Feferman, S. (2005). “Predicativity,” in S.Shapiro (ed.) The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 590624.
  • Feferman, S. and Jäger, G. (1993). “Systems of Explicit Mathematics with Non-Constructive m-operator. Part I,” Annals of Pure and Applied Logic 65, pp. 243263.
  • Feferman, S. and Jäger, G. (1996). “Systems of Explicit Mathematics with Non-Constructive m-operator. Part II,” Annals of Pure and Applied Logic 79, pp. 3752.
  • Field, H. (1982). “Realism and Anti-realism about Mathematics,” Philosophical Topics 13, pp. 4569.
  • Field, H. (1988). “Realism, Mathematics, and Modality,” Philosophical Topics 19, pp. 57107.
  • Fine, K. (2002). The Limits of Abstraction. Oxford: Oxford University Press.
  • Frege, G. (1884/1980). The Foundations of Arithmetic, 2nd revd. edn., J. L. Austin, trans. Evanston, IL: Northwestern University Press.
  • Friedman, M. (1999). Reconsidering Logical Positivism. Cambridge: Cambridge University Press.
  • Friedman, M. and Creath, R. (eds) (2007). The Cambridge Companion to Carnap. Cambridge: Cambridge University Press.
  • Gödel, K. (1944). “Russell's Mathematical Logic,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 447469.
  • Gödel, K. (1947/64). “What is Cantor's Continuum Problem?” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 470485.
  • Hacking, I. (2006). The Emergence of Probability, 2nd edn. Cambridge: Cambridge University Press.
  • Hale, B. (1988). Abstract Objects. Oxford: Blackwell Publishers.
  • Hale, B. (2001). “Reals by Abstraction,” in The Reason's Proper Study. Oxford: Oxford University Press, pp. 399420.
  • Hale, B. and Wright, C. (2001). The Reason's Proper Study. Oxford: Oxford University Press.
  • Hallett, M. (1984). Cantorian Set Theory and the Limitation of Size, number 10 in Oxford Logic Guides. Oxford: Oxford University Press.
  • Hellman, G. (1989). Mathematics Without Numbers. Oxford: Oxford University Press.
  • Hellman, G. (1990). “Modal-Structural Mathematics,” in A. D.Irvine (ed.) Physicalism in Mathematics. Dordrecht: Kluwer Academic Publishers, pp. 307330.
  • Hellman, G. (1993). “Gleason's Theorem is Not Constructively Provable,” Journal of Philosophical Logic 22, pp. 193203.
  • Hilbert, D. (1925). “On the Infinite,” in P.Benacerraf and H.Putnam (eds) Philosophy of Mathematics, 2nd edn. Cambridge: Cambridge University Press, pp. 183201.
  • Hylton, P. (1994). “Quine's Naturalism,” in P. A.French, T. E.Uehling, Jr. and H. K.Wettstein (eds) Philosophical Naturalism, Vol. XIX of Midwest Studies in Philosophy. Notre Dame, IN: University of Notre Dame Press, pp. 261282.
  • Kim, J. (1988). “What is ‘Naturalized Epistemology’,” in H.Kornblith (ed.) Naturalizing Epistemology, 2nd edn. Cambridge, MA: MIT Press, pp. 3355.
  • Kitcher, P. (1983). The Nature of Mathematical Knowledge. New York: Oxford University Press.
  • Kitcher, P. (1988). “Mathematical Naturalism,” in W.Aspray and P.Kitcher (eds) Essays on the History and Philosophy of Modern Mathematics, Vol. XI of Minnesota Studies in the Philosophy of Science. Minneapolis, MN: University of Minnesota Press, pp. 293328.
  • Kornblith, H. (ed.) (1994). Naturalizing Epistemology, 2nd edn. Cambridge, MA: MIT Press.
  • Kreisel, G. (1965). “Mathematical Logic,” in T. L.Saaty (ed.) Lectures in Modern Mathematics, Vol. 3. New York: Wiley and Sons, pp. 95195.
  • Kunen, K. (1980). Set Theory: An Introduction to Independence Proofs. Dordrecht: North-Holland.
  • Lavine, S. (1994). Understanding the Infinite. Cambridge, MA: Harvard University Press.
  • Lewis, D. (1966). “An Argument for the Identity Theory,” in Philosophical Papers, Vol. 1. New York: Oxford University Press, pp. 99107.
  • Lewis, D. (1972). “Psychophysical and Theoretical Identifications,” Australasian Journal of Philosophy 50, pp. 249258.
  • Lewis, D. (1980). “Mad Pain and Martian Pain,” in Philosophical Papers, Vol. 1. New York: Oxford University Press, pp. 122132.
  • Maddy, P. J. (1990). Realism in Mathematics. Oxford: Clarendon Press.
  • Maddy, P. J. (1995). “Naturalism and Ontology,” Philosophia Mathematica 3, pp. 248270.
  • Maddy, P. J. (1996). “Set Theoretic Naturalism,” Journal of Symbolic Logic 61, pp. 490514.
  • Maddy, P. J. (1997). Naturalism in Mathematics. Oxford: Clarendon Press.
  • Maddy, P. J. (1998a). “How to be a Naturalist about Mathematics,” in G.Dales and G.Oliveri (eds) Truth in Mathematics. Oxford: Clarendon Press, pp. 161180.
  • Maddy, P. J. (1998b). “Naturalizing Mathematical Methodology,” in M.Schirn (ed.) The Philosophy of Mathematics Today. Oxford: Oxford University Press, pp. 175193.
  • Maddy, P. J. (2003). “Second Philosophy,” Journal of the Indian Council of Philosophical Research 20, pp. 73106.
  • Malament, D. (1992). “Critical Notice: Itamar Pitowsky's Quantum Probability – Quantum Logic,” Philosophy of Science 59, pp. 300320.
  • Paseau, A. (2005). “Naturalism in Mathematics and the Authority of Philosophy,” British Journal of Philosophy 56, pp. 377396.
  • Paseau, A. (2007). “Scientific Platonism,” in M. P. Leng, A.Paseau and M.Potter (eds) Mathematical Knowledge. Oxford: Oxford University Press, pp. 123149.
  • Pitowsky, I. (1989). Quantum Probability – Quantum Logic, number 321 in Lecture Notes in Physics. New York: Springer-Verlag.
  • Posy, C. (2005). “Intuitionism and Philosophy,” The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 318355.
  • Quine, W. V. O. (1948). “On What There Is,” in From A Logical Point of View, 2nd edn. New York: Harper and Row, pp. 119.
  • Quine, W. V. O. (1951). “Two Dogmas of Empiricism,” in From a Logical Point of View, 2nd edn. New York: Harper and Row, pp. 2046.
  • Quine, W. V. O. (1954). “Carnap and Logical Truth,” in The Ways of Paradox, revd. and enlarged edn. Cambridge, MA: Harvard University Press, pp. 107132.
  • Quine, W. V. O. (1969a). “Epistemology Naturalized,” in Ontological Relativity and Other Essays. New York: Columbia University Press, pp. 6990.
  • Quine, W. V. O. (1969b). “Existence and Quantification,” in Ontological Relativity and Other Essays,. New York: Columbia University Press, pp. 91113.
  • Quine, W. V. O. (1969c). “Natural Kinds,” in Ontological Relativity and Other Essays. New York: Columbia University Press, pp. 114138.
  • Quine, W. V. O. (1975). “Five Milestones of Empiricism,” in Theories and Things. Cambridge, MA: Harvard University Press, 1981, pp. 6772.
  • Quine, W. V. O. (1992). “Structure and Nature,” Journal of Philosophy 89, pp. 59.
  • Quine, W. V. O. (1995). From Stimulus to Science. Cambridge, MA: Harvard University Press.
  • Quine, W. V. O. (1998b). “Reply to Charles Parsons,” in L. E.Hahn and P. A.Schillp (eds) The Philosophy of W. V. Quine, expanded and revd. edn, Vol. XVIII of The Library of Living Philosophers. La Salle, IL: Open Court, pp. 398403.
  • Quine, W. V. and Ullian, J. (1978). The Web of Belief, 2nd edn. New York: Random House.
  • Resnik, M. (1997). Mathematics as a Science of Patterns. Oxford: Oxford University Press.
  • Richardson, A. W. (1998). Carnap's Construction of the World. Cambridge: Cambridge University Press.
  • Richman, F. (2000). “Gleason's Theorem has a Constructive Proof,” Journal of Philosophical Logic 29, pp. 425431.
  • Richman, F. and Bridges, D. (1999). “A Constructive Proof of Gleason's Theorem,” Journal of Functional Analysis 162, pp. 287312.
  • Ricketts, T. (2007). “Tolerance and Logicism: Logical Syntax and the Philosophy of Mathematics,” in M.Friedman and R.Creath (eds) The Cambridge Companion to Carnap. Cambridge: Cambridge University Press, pp. 200225.
  • Robbin, J. (1969). Mathematical Logic. New York: Benjamin.
  • Roland, J. W. (2007). “Maddy and Mathematics: Naturalism or Not,” The British Journal for the Philosophy of Science 58, pp. 423450.
  • Roland, J. W. (2008). “Kitcher, Mathematics, and Naturalism,” Australasian Journal of Philosophy 86, pp. 481497.
  • Rosen, G. (1999). “Review of Naturalism in Mathematics,” British Journal for the Philosophy of Science 50, pp. 467474.
  • Ryle, G. (1949). The Concept of Mind. London: Hutchinson Press.
  • Shapiro, S. (1997). Philosophy of Mathematics: Structure and Ontology. Oxford: Oxford University Press.
  • Shapiro, S. (2000a). “Frege Meets Dedekind: A Neo-Logicist Treatment of Real Analysis,” Notre Dame Journal of Formal Logic 41, pp. 335364.
  • Shapiro, S. (2000b). Thinking About Mathematics. Oxford: Oxford University Press.
  • Streater, R. F. and Wightman, A. S. (1978). PCT, Spin and Statistics, and All That. New York: Benjamin/Cummings.
  • Stroud, B. (1996). “The Charm of Naturalism,” Proceedings and Addresses of the American Philosophical Association, Vol. 2 of 70. Lancaster, PA: American Philosophical Association, pp. 4355.
  • Sturgeon, N. L. (1985). “Moral Explanations,” in G.Sayre-McCord (ed.) Essays on Moral Realism. Ithaca, NY: Cornell University Press, pp. 229255.
  • Troelstra, A. S. (1977). Choice Sequences. Oxford: Oxford University Press.
  • Weir, A. (2005). “Naturalism Reconsidered,” in S.Shapiro (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 460482.
  • Weyl, H. (1918/1994). The Continuum: A Critical Examination of the Foundation of Analysis, S. Pollard and T. Bole, trans. New York: Dover.
  • Wright, C. (1983). Frege's Conception of Numbers as Objects. Aberdeen: Aberdeen University Press.
  • Wright, C. (1997). “On the Philosophical Significance of Frege's Theorem,” in B.Hale and C.Wright (eds), The Reason's Proper Study. Oxford: Oxford University Press, pp. 272306.
  • Wright, C. (1999). “Is Hume's Principle Analytic?”, The Reason's Proper Study. Oxford: Oxford University Press, pp. 307332.
  • Ye, F. (2000). Strict Constructivism and the Philosophy of Mathematics. PhD thesis, Princeton University.