SEARCH

SEARCH BY CITATION

References

  • Afriat, S.N. (1967). ‘The construction of a utility function from expenditure data’, International Economic Review, vol. 8, pp. 767.
  • Banks, J., Blundell, R. and Lewbel, A. (1997). ‘Quadratic Engel curves and consumer demand’, Review of Economics and Statistics, vol. 79(4), pp. 52739.
  • Bar-Shira, Z. (1992). ‘Nonparametric test of the expected utility hypothesis’, American Journal of Agricultural Economics, vol. 74(3), pp. 52333.
  • Blow, L., Browning, M. and Crawford, I. (2008). ‘Revealed preference analysis of characteristics models’, Review of Economic Studies, vol. 75(4), pp. 119.
  • Blundell, R. and Robin, J-M. (1999). ‘Estimation in large and disaggregated demand systems: an estimator for conditionally linear systems’, Journal of Applied Econometrics, vol. 14(3), pp. 20932.
  • Brown, B. and Walker, M.B. (1989). ‘The random utiity hypothesis and inference in demand systems’, Econometrica, vol. 57(4), pp. 81529.
  • Browning, M. (1989). ‘A nonparametric test of the life-cycle rational expections hypothesis’, International Economic Review, vol. 30(4), pp. 97992.
  • Bunge, J. and Fitzpatrick, M. (1993). ‘Estimating the number of species: a review’, Journal of the American Statistical Association, vol. 88(421), pp. 36473.
  • Chao, A. (1984). ‘Nonparametric estimation of the number of classes in a population’, Scandinavian Journal of Statistics Theory and Applications, vol. 11, pp. 26570.
  • Cherchye, L., De Rock, B. and Vermeulen, F. (2007). ‘The collective model of household consumption: a nonparametric characterization’, Econometrica, vol. 75, pp. 55374.
  • Colwell, R.K. and Coddington, J.A. (1994). ‘Estimating terrestrial biodiversity through extrapolation’, Philosophical Transactions of the Royal Society (Series B), vol. 345, pp. 10118.
  • Crawford, I. (2010). ‘Habits revealed’, Review of Economic Studies, vol. 77(4), pp. 1382402.
    Direct Link:
  • Dean, M. and Martin, D. (2010). ‘How rational are your choice data?’, mimeo, New York University, available at https://files.nyu.edu/djm431/public/DeanMartin_30June2010.pdf, accessed 18 August 2012.
  • Deaton, A.S. (1988). ‘Quality, quantity and spatial variation of price’, American Economic Review, vol. 78, pp. 41843.
  • Diewert, W.E. (1973). ‘Afriat and revealed preference theory’, Review of Economic Studies, vol. 40, pp. 41926.
  • Efron, B. and Thisted, R. (1976). ‘Estimating the number of unknown species: how many words did Shakespeare know?’, Biometrika, vol. 63(3), pp. 4357.
  • Erdős, P. and Rényi, A. (1961). ‘On a classical problem of probability theory’, Magyar Tud. Akad. Mat. Kutató Int. Közl. vol. 6, pp. 21520.
  • Friedman, M. (1953). Essays in Positive Economics, Part I - The Methodology of Positive Economics. Chicago: University of Chicago Press, pp. 343.
  • Gross, J. (1995). ‘Testing data for consistency with revealed preference’, Review of Economics and Statistics, vol. 77(4), pp. 70110.
  • Haag, B., Hoderlein, S. and Pendakur, K. (2009). ‘Testing and imposing slutsky symmetry in nonparametric demand systems’, Journal of Econometrics, vol. 153, pp. 3350.
  • Hanoch, G. and Rothschild, M. (1972). ‘Testing the assumptions of production theory: a nonparametric approach’, Journal of Political Economy, vol. 80(2), pp. 25675.
  • Heckman, J. (2000). ‘Microdata, heterogeneity and the evaluation of public policy’, in (T. Persson, ed.) Nobel Lectures: Economic Sciences 1996–2000, pp. 255321, Singapore: World Scientific.
  • Heckman, J. and Singer, B. (1984). ‘A method for minimizing the impact of distributional assumptions in econometric models for duration data’, Econometrica, vol. 52(2), pp. 271320.
  • Lewbel, A. (2001). ‘Demand systems with and without errors’, American Economic Review, vol. 91(3), pp. 6118.
  • Lewbel, A. and Pendakur, K. (2009). ‘Tricks with hicks: the EASI demand system’, American Economic Review, vol. 99(3), pp. 82763.
  • Matzkin, R.L. (2003). ‘Nonparametric estimation of nonadditive random functions’, Econometrica, vol. 71(5), pp. 133975.
  • Matzkin, R.L. (2007). ‘Nonparametric identification’, Chapter 73 in (J.J. Heckman and E.E. Leamer, eds.) Handbook of Econometrics, vol. 6b, pp. 530768, Amsterdam: Elsevier.
  • McElroy, M. (1987). ‘Additive general error models for production, cost and derived demand or share systems’, Journal of Political Economy, vol. 95(4) pp. 73757.
  • McFadden, D. (2000). ‘Economic choices’, in (T. Persson, ed.) Nobel Lectures: Economic Sciences 1996–2000, pp. 33065, Singapore: World Scientific.
  • Raaijmakers, J.G.W. (1987). ‘Statistical analysis of the Mi-chaelis-Menten equation’, Biometrics, vol. 43, pp. 793803.
  • Stigler, G. and Becker, G. (1977). ‘De gustibus non est disputandem’, American Economic Review, vol. 67(2), pp. 6790.
  • Varian, H. (1982). ‘The nonparametric approach to demand analysis’, Econometrica, vol. 50, pp. 94573.
  • Varian, H. (1983a). ‘Nonparametric tests of consumer behaviour’ , Review of Economic Studies, vol. 50, pp. 99110.
  • Varian, H. (1983b). ‘Nonparametric tests of models of investor behavior’, Journal of Financial and Quantitative Analysis, vol. 18(3), pp. 26978.
  • Varian, H. (1984). ‘The nonparametric approach to production analysis’, Econometrica, vol. 52, pp. 57997.
  • Varian, H. (1985). ‘Nonparametric analysis of optimizing behavior with measurement error’, Journal of Econometrics, vol. 30, pp. 44558.
  • Warshall, S. (1962). ‘A theorem on Boolean matrices’, Journal of the American Association of Computing Machinery, vol. 9, pp. 1112.