SEARCH

SEARCH BY CITATION

Keywords:

  • fuzzy resource allocation;
  • AIRS;
  • Wisconsion breast cancer data set;
  • Pima Indians diabetes data set;
  • ECG arrhythmia data set;
  • ROC curves;
  • 10-fold cross-validation

Abstract: The artificial immune recognition system (AIRS) has been shown to be an efficient approach to tackling a variety of problems such as machine learning benchmark problems and medical classification problems. In this study, the resource allocation mechanism of AIRS was replaced with a new one based on fuzzy logic. The new system, named Fuzzy-AIRS, was used as a classifier in the classification of three well-known medical data sets, the Wisconsin breast cancer data set (WBCD), the Pima Indians diabetes data set and the ECG arrhythmia data set. The performance of the Fuzzy-AIRS algorithm was tested for classification accuracy, sensitivity and specificity values, confusion matrix, computation time and receiver operating characteristic curves. Also, the AIRS and Fuzzy-AIRS algorithms were compared with respect to the amount of resources required in the execution of the algorithm. The highest classification accuracy obtained from applying the AIRS and Fuzzy-AIRS algorithms using 10-fold cross-validation was, respectively, 98.53% and 99.00% for classification of WBCD; 79.22% and 84.42% for classification of the Pima Indians diabetes data set; and 100% and 92.86% for classification of the ECG arrhythmia data set. Hence, these results show that Fuzzy-AIRS can be used as an effective classifier for medical problems.