SEARCH

SEARCH BY CITATION

References

  • 1
    Hirsch MS, Günthard HF, Schapiro JM et al. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel. Top HIV Med 2008; 16: 266285.
  • 2
    Johnson VA, Brun-Vezinet F, Clotet B et al. Update of the drug resistance mutations in HIV-1. Top HIV Med 2008; 16: 138145.
  • 3
    Vercauteren J, Vandamme AM. Algorithms for the interpretation of HIV-1 genotypic drug resistance information. Antiviral Res 2006; 71: 335342.
  • 4
    Rhee SY, Fessel WJ, Liu TF et al. Predictive value of HIV-1 genotypic resistance test interpretation algorithms. J Infect Dis 2009; 200: 453463.
  • 5
    De Luca A, Perno CF. Impact of different HIV resistance interpretation by distinct systems on clinical utility of resistance testing. Curr Opin Infect Dis 2003; 16: 573580.
  • 6
    Kijak GH, Rubio AE, Pampuro SE et al. Discrepant results in the interpretation of HIV-1 drug-resistance genotypic data among widely used algorithms. HIV Med 2003; 4: 7278.
  • 7
    Snoeck J, Kantor R, Shafer RW et al. Discordances between interpretation algorithms for genotypic resistance to protease and reverse transcriptase inhibitors of human immunodeficiency virus are subtype dependent. Antimicrob Agents Chemother 2006; 50: 694701.
  • 8
    Badri SM, Adeyemi OM, Max BE, Zagorski BM, Barker DE. How does expert advice impact genotypic resistance testing in clinical practice? Clin Infect Dis 2003; 37: 708713.
  • 9
    Bossi P, Peytavin G, Ait-Mohand H et al. GENOPHAR: a randomized study of plasma drug measurements in association with genotypic resistance testing and expert advice to optimize therapy in patients failing antiretroviral therapy. HIV Med 2004; 5: 352359.
  • 10
    Clotet B, Paredes R. Clinical approach to drug resistance interpretation: expert advice. Curr Opin HIV AIDS 2007; 2: 145149.
  • 11
    Vermeiren H, Van Craenenbroeck E, Alen P et al. for the Virco Clinical Response Collaborative Team. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 2007; 145: 4755.
  • 12
    Winters B, Van Craenenbroeck E, Van der Borght K, Lecocq P, Villacian J, Bacheler L. Clinical cut-offs for HIV-1 phenotypic resistance estimates: update based on recent pivotal clinical trial data and a revised approach to viral mixtures. J Virol Methods 2009; 162: 101108.
  • 13
    Larder B, Wang D, Revell A et al. The development of artificial neural networks to predict virological response to combination HIV therapy. Antivir Ther 2007; 12: 1524.
  • 14
    Rosen-Zvi M, Altmann A, Prosperi M et al. Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics 2008; 24: i399i406.
  • 15
    Altmann A, Rosen-Zvi M, Prosperi M et al. Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy. PLoS One 2008; 3: e3470.
  • 16
    Randolph JJ. Free-marginal multirater kappa: an alternative to Fleiss' fixed-marginal multirater kappa. Joensuu University Learning and Instruction Symposium. Joensuu, Finland, October 14–15th, 2005.
  • 17
    Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 2005; 38: 404415.
  • 18
    Prosperi MC, Altmann A, Rosen-Zvi M et al. Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment. Antivir Ther 2009; 14: 433442.
  • 19
    Zazzi M, Prosperi M, Vicenti I et al. Rules-based HIV-1 genotypic resistance interpretation systems predict 8 week and 24 week virological antiretroviral treatment outcome and benefit from drug potency weighting. J Antimicrob Chemother 2009; 64: 616624.