SEARCH

SEARCH BY CITATION

References

  1. References
  2. Reference Appendix

For a full list of References, please see Reference Appendix pp. e156–e163.

Reference Appendix

  1. References
  2. Reference Appendix
  • 1
    Deisenhammer F, Bartos A, Egg R, et al. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. European Journal of Neurology 2006; 13: 913922.
  • 2
    Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics 2001; 69: 8995.
  • 3
    Brainin M, Barnes M, Baron JC, et al. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces--revised recommendations 2004. European Journal of Neurology 2004; 11: 577581.
  • 4
    Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurology 2003; 2: 605613.
  • 5
    Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurology 2007; 6: 734746.
  • 6
    Sunderland T, Linker G, Mirza N, et al. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 2003; 289: 20942103.
  • 7
    Wiltfang J, Lewczuk P, Riederer P, et al. Consensus paper of the WFSBP Task Force on Biological Markers of Dementia: the role of CSF and blood analysis in the early and differential diagnosis of dementia. World Journal of Biological Psychiatry 2005; 6: 6984.
  • 8
    Ishiguro K, Ohno H, Arai H, et al. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease. Neuroscience Letters 1999; 270: 9194.
  • 9
    Itoh N, Arai H, Urakami K, et al. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease. Annals of Neurology 2001; 50: 150156.
  • 10
    Andreasen N, Minthon L, Davidsson P, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Archives of Neurology 2001; 58: 373379.
  • 11
    Hulstaert F, Blennow K, Ivanoiu A, et al. Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 1999; 52: 15551562.
  • 12
    Hesse C, Rosengren L, Vanmechelen E, et al. Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke. Journal of Alzheimers Disease 2000; 4: 199206.
  • 13
    Nagga K, Gottfries J, Blennow K, Marcusson J. Cerebrospinal fluid phospho-tau, total tau and beta-amyloid(1-42) in the differentiation between Alzheimer’s disease and vascular dementia. Dementia and Geriatric Cognitive Disorders 2002; 14: 183190.
  • 14
    Hampel H, Buerger K, Zinkowski R, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Archives of General Psychiatry 2004; 61: 95102.
  • 15
    Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E, Hulstaert F. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurology Science 2001; 22: 7778.
  • 16
    Schoonenboom NS, Pijnenburg YA, Mulder C, et al. Amyloid beta(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 2004; 62: 15801584.
  • 17
    Vanderstichele H, De VK, Blennow K, et al. Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clinical Chemistry and Laboratory Medicine 2006; 44: 14721480.
  • 18
    Vanmechelen E, Vanderstichele H, Davidsson P, et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neuroscience Letters 2000; 285: 4952.
  • 19
    Blennow K, Johansson A, Zetterberg H. Diagnostic value of 14-3-3beta immunoblot and T-tau/P-tau ratio in clinically suspected Creutzfeldt-Jakob disease. International Journal of Molecular Medicine 2005; 16: 11471149.
  • 20
    Buerger K, Otto M, Teipel SJ, et al. Dissociation between CSF total tau and tau protein phosphorylated at threonine 231 in Creutzfeldt-Jakob disease. Neurobiology of Aging 2006; 27: 1015.
  • 21
    Otto M, Esselmann H, Schulz-Shaeffer W, et al. Decreased beta-amyloid1-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology 2000; 54: 10991102.
  • 22
    Otto M, Wiltfang J, Cepek L, et al. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 2002; 58: 192197.
  • 23
    Riemenschneider M, Wagenpfeil S, Vanderstichele H, et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Molecular Psychiatry 2003; 8: 343347.
  • 24
    Satoh K, Shirabe S, Eguchi H, et al. 14-3-3 protein, total tau and phosphorylated tau in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease and neurodegenerative disease in Japan. Cellular and Molecular Neurobiology 2006; 26: 4552.
  • 25
    Van Everbroeck B, Green AJ, Pals P, Martin JJ, Cras P. Decreased Levels of Amyloid-beta 1-42 in Cerebrospinal Fluid of Creutzfeldt-Jakob Disease Patients. Journal of Alzheimers Disease 1999; 1: 419424.
  • 26
    Van Everbroeck B, Green AJ, Vanmechelen E, et al. Phosphorylated tau in cerebrospinal fluid as a marker for Creutzfeldt-Jakob disease. Journal of Neurology, Neurosurgery and Psychiatry 2002; 73: 7981.
  • 27
    Van Everbroeck B, Quoilin S, Boons J, Martin JJ, Cras P. A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. Journal of Neurology, Neurosurgery and Psychiatry 2003; 74: 12101214.
  • 28
    Goodall CA, Head MW, Everington D, Ironside JW, Knight RS, Green AJ. Raised CSF phospho-tau concentrations in variant Creutzfeldt-Jakob disease: diagnostic and pathological implications. Journal of Neurology, Neurosurgery and Psychiatry 2006; 77: 8991.
  • 29
    Bibl M, Mollenhauer B, Esselmann H, et al. CSF amyloid-beta-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 2006; 5: 11771187.
  • 30
    Bibl M, Mollenhauer B, Lewczuk P, et al. Validation of amyloid-beta peptides in CSF diagnosis of neurodegenerative dementias. Molecular Psychiatry 2007; 12: 671680.
  • 31
    Bibl M, Mollenhauer B, Wolf S, et al. Reduced CSF carboxyterminally truncated Abeta peptides in frontotemporal lobe degenerations. Journal of Neural Transmission 2007; 114: 621628.
  • 32
    Borroni B, Gardoni F, Parnetti L, et al. Pattern of Tau forms in CSF is altered in progressive supranuclear palsy. Neurobiology of Aging 2009; 30: 3440.
  • 33
    Mollenhauer B, Bibl M, Esselmann H, et al. Tauopathies and synucleinopathies: do cerebrospinal fluid beta-amyloid peptides reflect disease-specific pathogenesis? Journal of Neural Transmission 2007; 114: 919927.
  • 34
    Andersson C, Blennow K, Almkvist O, et al. Increasing CSF phospho-tau levels during cognitive decline and progression to dementia. Neurobiology of Aging 2008; 29: 14661473.
  • 35
    Buerger K, Teipel SJ, Zinkowski R, et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 2002; 59: 627629.
  • 36
    Buerger K, Ewers M, Andreasen N, et al. Phosphorylated tau predicts rate of cognitive decline in MCI subjects: a comparative CSF study. Neurology 2005; 65: 15021503.
  • 37
    Ewers M, Buerger K, Teipel SJ, et al. Multicenter assessment of CSF-phosphorylated tau for the prediction of conversion of MCI. Neurology 2007; 69: 22052212.
  • 38
    Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology 2007; 64: 343349.
  • 39
    Gustafson DR, Skoog I, Rosengren L, Zetterberg H, Blennow K. Cerebrospinal fluid beta-amyloid 1-42 concentration may predict cognitive decline in older women. Journal of Neurology, Neurosurgery and Psychiatry 2007; 78: 461464.
  • 40
    Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A. Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Archives of Neurology 2002; 59: 17291734.
  • 41
    Schonknecht P, Pantel J, Kaiser E, Thomann P, Schroder J. Increased tau protein differentiates mild cognitive impairment from geriatric depression and predicts conversion to dementia. Neuroscience Letters 2007; 416: 3942.
  • 42
    Stomrud E, Hansson O, Blennow K, Minthon L, Londos E. Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dementia and Geriatric Cognitive Disorders 2007; 24: 118124.
  • 43
    Zetterberg H, Wahlund LO, Blennow K. Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neuroscience Letters 2003; 352: 6769.
  • 44
    Tokuda T, Oide T, Tamaoka A, Ishii K, Matsuno S, Ikeda S. Prednisolone (30–60 mg/day) for diseases other than AD decreases amyloid beta-peptides in CSF. Neurology 2002; 58: 14151418.
  • 45
    Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology 2007; 68: 666669.
  • 46
    Kaiser E, Schonknecht P, Thomann PA, Hunt A, Schroder J. Influence of delayed CSF storage on concentrations of phospho-tau protein (181), total tau protein and beta-amyloid (1-42). Neuroscience Letters 2007; 417: 193195.
  • 47
    Lewczuk P, Beck G, Esselmann H, et al. Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid beta peptides. Clinical Chemistry 2006; 52: 332334.
  • 48
    Schoonenboom NS, Mulder C, Vanderstichele H, et al. Effects of processing and storage conditions on amyloid beta (1-42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clinical Chemistry 2005; 51: 189195.
  • 49
    Bibl M, Esselmann H, Otto M, et al. Cerebrospinal fluid amyloid beta peptide patterns in Alzheimer’s disease patients and nondemented controls depend on sample pretreatment: indication of carrier-mediated epitope masking of amyloid beta peptides. Electrophoresis 2004; 25: 29122918.
  • 50
    Sjogren M, Vanderstichele H, Agren H, et al. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clinical Chemistry 2001; 47: 17761781.
  • 51
    Boston PF, Jackson P, Thompson RJ. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. Journal of Neurochemistry 1982; 38: 14751482.
  • 52
    Hsich G, Kenney K, Gibbs CJ, Lee KH, Harrington MG. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. New England Journal of Medicine 1996; 335: 924930.
  • 53
    Zerr I, Pocchiari M, Collins S, et al. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 2000; 55: 811815.
  • 54
    Beaudry P, Cohen P, Brandel JP, et al. 14-3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Dementia and Geriatric Cognitive Disorders 1999; 10: 4046.
  • 55
    Collins S, Boyd A, Fletcher A, et al. Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid. Journal of Clinical Neuroscience 2000; 7: 203208.
  • 56
    Collins SJ, Sanchez-Juan P, Masters CL, et al. Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain 2006; 9: 22782287.
  • 57
    Kenney K, Brechtel C, Takahashi H, Kurohara K, Anderson P, Gibbs CJ Jr. An enzyme-linked immunosorbent assay to quantify 14-3-3 proteins in the cerebrospinal fluid of suspected Creutzfeldt-Jakob disease patients. Annals of Neurology 2000; 48: 395398.
  • 58
    Lemstra AW, Van Meegen MT, Vreyling JP, et al. 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients. Neurology 2000; 55: 514516.
  • 59
    Green AJ, Ramljak S, Muller WE, Knight RS, Schroder HC. 14-3-3 in the cerebrospinal fluid of patients with variant and sporadic Creutzfeldt-Jakob disease measured using capture assay able to detect low levels of 14-3-3 protein. Neuroscience Letters 2002; 324: 5760.
  • 60
    Zerr I, Schulz-Schaeffer WJ, Giese A, et al. Current clinical diagnosis in Creutzfeldt-Jakob disease: identification of uncommon variants. Annals of Neurology 2000; 48: 323329.
  • 61
    Castellani RJ, Colucci M, Xie Z, et al. Sensitivity of 14-3-3 protein test varies in subtypes of sporadic Creutzfeldt-Jakob disease. Neurology 2004; 63: 436442.
  • 62
    Bartosik-Psujek H, Stelmasiak Z. The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. Journal of Neural Transmission 2006; 113: 339345.
  • 63
    Zerr I, Bodemer M, Gefeller O, et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Annals of Neurology 1998; 43: 3240.
  • 64
    Burkhard PR, Sanchez JC, Landis T, Hochstrasser DF. CSF detection of the 14-3-3 protein in unselected patients with dementia. Neurology 2001; 56: 15281533.
  • 65
    Irani DN, Kerr DA. 14-3-3 protein in the cerebrospinal fluid of patients with acute transverse myelitis. Lancet 2000; 355: 901.
  • 66
    Colucci M, Roccatagliata L, Capello E, et al. The 14-3-3 protein in multiple sclerosis: a marker of disease severity. Multiple Sclerosis 2004; 10: 477481.
  • 67
    Martinez-Yelamos A, Rovira A, Sanchez-Valle R, et al. CSF 14-3-3 protein assay and MRI as prognostic markers in patients with a clinically isolated syndrome suggestive of MS. Journal of Neurology 2004; 251: 12781279.
  • 68
    De Seze J, Peoc’h K, Ferriby D, Stojkovic T, Laplanche JL, Vermersch P. 14-3-3 Protein in the cerebrospinal fluid of patients with acute transverse myelitis and multiple sclerosis. Journal of Neurology 2002; 249: 626627.
  • 69
    Yasui K, Inoue Y, Kanbayashi T, Nomura T, Kusumi M, Nakashima K. CSF orexin levels of Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. Journal of the Neurological Sciences 2006; 250: 120123.
  • 70
    Wurtman RJ. Narcolepsy and the hypocretins. Metabolism 2006; 55(10 Suppl 2): S36S39.
  • 71
    Dohi K, Nishino S, Nakamachi T, et al. CSF orexin A concentrations and expressions of the orexin-1 receptor in rat hippocampus after cardiac arrest. Neuropeptides 2006; 40: 245250.
  • 72
    Oyama K, Takahashi T, Shoji Y, et al. Niemann-Pick disease type C: cataplexy and hypocretin in cerebrospinal fluid. Tohoku Journal of Experimental Medicine 2006; 209: 263267.
  • 73
    Grady SP, Nishino S, Czeisler CA, Hepner D, Scammell TE. Diurnal variation in CSF orexin-A in healthy male subjects. Sleep 2006; 29: 295297.
  • 74
    Baumann CR, Khatami R, Werth E, Bassetti CL. Hypocretin (orexin) deficiency predicts severe objective excessive daytime sleepiness in narcolepsy with cataplexy. Journal of Neurology, Neurosurgery and Psychiatry 2006; 77: 402404.
  • 75
    Gaus SE, Lin L, Mignot E. CSF hypocretin levels are normal in Huntington’s disease patients. Sleep 2005; 28: 16071608.
  • 76
    Arrer E, Oberascher G, Gibitz HJ. Protein distribution in the human perilymph. A comparative study between perilymph (post mortem), CSF and blood serum. Acta Oto-Laryngologica 1988; 2: 117123.
  • 77
    Arrer E, Gibitz HJ. Detection of beta 2-transferrin with agarose gel electrophoresis, immunofixation and silver staining in cerebrospinal fluid, secretions and other body fluids. Journal of Clinical Chemistry and Clinical Biochemistry 1987; 25: 113116.
  • 78
    Stibler H. Carbohydrate-deficient transferrin in serum: a new marker of potentially harmful alcohol consumption reviewed. Clinical Chemistry 1991; 37: 20292037.
  • 79
    Bell H, Tallaksen C, Sjaheim T, et al. Serum carbohydrate-deficient transferrin as a marker of alcohol consumption in patients with chronic liver diseases. Alcoholism, Clinical and Experimental Research 1993; 17: 246252.
  • 80
    Kristiansson B, Andersson M, Tonnby B, Hagberg B. Disialotransferrin developmental deficiency syndrome. Archives of Disease in Childhood 1989; 64: 7176.
  • 81
    Sloman AJ, Kelly RH. Transferrin allelic variants may cause false positives in the detection of cerebrospinal fluid fistulae. Clinical Chemistry 1993; 39: 14441445.
  • 82
    Jaeken J, Van Eijk HG, Van Der HC, Corbeel L, Eeckels R, Eggermont E. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clinica Chimica Acta 1984; 144: 245247.
  • 83
    Zaret DL, Morrison N, Gulbranson R, Keren DF. Immunofixation to quantify beta 2-transferrin in cerebrospinal fluid to detect leakage of cerebrospinal fluid from skull injury. Clinical Chemistry 1992; 38: 19081912.
  • 84
    Oberascher G. Cerebrospinal fluid otorrhea--new trends in diagnosis. American Journal of Otology 1988; 9: 102108.
  • 85
    Skedros DG, Cass SP, Hirsch BE, Kelly RH. Sources of error in use of beta-2 transferrin analysis for diagnosing perilymphatic and cerebral spinal fluid leaks. Otolaryngology - Head and Neck Surgery 1993; 109: 861864.
  • 86
    Kelly RH, Kelly CM, Busis SN. Factitious hearing loss and otorrhea in an adolescent boy. Clinica Chimica Acta 2000; 299: 205209.
  • 87
    Nandapalan V, Watson ID, Swift AC. Beta-2-transferrin and cerebrospinal fluid rhinorrhoea. Clinical Otolaryngology and Allied Sciences 1996; 21: 259264.
  • 88
    Roelandse FW, Van Der ZN, Didden JH, Van LJ, Souverijn JH. Detection of CSF leakage by isoelectric focusing on polyacrylamide gel, direct immunofixation of transferrins, and silver staining. Clinical Chemistry 1998; 44: 351353.
  • 89
    Normansell DE, Stacy EK, Booker CF, Butler TZ. Detection of beta-2 transferrin in otorrhea and rhinorrhea in a routine clinical laboratory setting. Clinical and Diagnostic Laboratory Immunology 1994; 1: 6870.
  • 90
    Keir G, Zeman A, Brookes G, Porter M, Thompson EJ. Immunoblotting of transferrin in the identification of cerebrospinal fluid otorrhoea and rhinorrhoea. Annals of Clinical Biochemistry 1992; 29(Pt 2): 210213.
  • 91
    Ryall RG, Peacock MK, Simpson DA. Usefulness of beta 2-transferrin assay in the detection of cerebrospinal fluid leaks following head injury. Journal of Neurosurgery 1992; 77: 737739.
  • 92
    Bateman N, Jones NS. Rhinorrhoea feigning cerebrospinal fluid leak: nine illustrative cases. Journal of Laryngology and Otology 2000; 114: 462464.
  • 93
    Warnecke A, Averbeck T, Wurster U, Harmening M, Lenarz T, Stover T. Diagnostic relevance of beta2-transferrin for the detection of cerebrospinal fluid fistulas. Archives of Otolaryngology - Head and Neck Surgery 2004; 130: 11781184.
  • 94
    Oberascher G. A modern concept of cerebrospinal fluid diagnosis in oto- and rhinorrhea. Rhinology 1988; 26: 89103.
  • 95
    Seidl RO, Todt I, Ernst A. Reconstruction of traumatic skull base defects with alloplastic, resorbable fleece. HNO 2000; 48: 753757.
  • 96
    Simmen D, Bischoff T, Schuknecht B. Experiences with assessment of frontobasal defects, a diagnostic concept. Laryngo-Rhino-Otologie 1997; 76: 583587.
  • 97
    Skedros DG, Cass SP, Hirsch BE, Kelly RH. Beta-2 transferrin assay in clinical management of cerebral spinal fluid and perilymphatic fluid leaks. Journal of Otolaryngology 1993; 22: 341344.
  • 98
    Tumani H, Reiber H, Nau R, et al. Beta-trace protein concentration in cerebrospinal fluid is decreased in patients with bacterial meningitis. Neuroscience Letters 1998; 242: 58.
  • 99
    Hochwald GM, Pepe AJ, Thorbecke GJ. Trace proteins in biological fluids. IV. Physicochemical properties and sites of formation of gamma-trace and beta-trace proteins. Proceedings of the Society for Experimental Biology and Medicine 1967; 124: 961966.
  • 100
    Urade Y, Tanaka T, Eguchi N, et al. Structural and functional significance of cysteine residues of glutathione-independent prostaglandin D synthase. Identification of Cys65 as an essential thiol. Journal of Biological Chemistry 1995; 270: 14221428.
  • 101
    Blodorn B, Mader M, Urade Y, Hayaishi O, Felgenhauer K, Bruck W. Choroid plexus: the major site of mRNA expression for the beta-trace protein (prostaglandin D synthase) in human brain. Neuroscience Letters 1996; 209: 117120.
  • 102
    Bachmann-Harildstad G. Diagnostic values of beta-2 transferrin and beta-trace protein as markers for cerebrospinal fluid fistula. Rhinology 2008; 46: 8285.
  • 103
    Meco C, Oberascher G, Arrer E, Moser G, Albegger K. Beta-trace protein test: new guidelines for the reliable diagnosis of cerebrospinal fluid fistula. Otolaryngology - Head and Neck Surgery 2003; 129: 508517.
  • 104
    Felgenhauer K, Schadlich HJ, Nekic M. Beta trace-protein as marker for cerebrospinal fluid fistula. Klinische Wochenschrift 1987; 65: 764768.
  • 105
    Meco C, Arrer E, Oberascher G. Efficacy of cerebrospinal fluid fistula repair: sensitive quality control using the beta-trace protein test. American Journal of Rhinology 2007; 21: 729736.
  • 106
    Petereit HF, Bachmann G, Nekic M, Althaus H, Pukrop R. A new nephelometric assay for beta-trace protein (prostaglandin D synthase) as an indicator of liquorrhoea. Journal of Neurology, Neurosurgery and Psychiatry 2001; 71: 347351.
  • 107
    Reiber H, Walther K, Althaus H. Beta-trace protein as sensitive marker for CSF rhinorhea and CSF otorhea. Acta Neurologica Scandinavica 2003; 108: 359362.
  • 108
    Bachmann-Harildstad G. Incidence of CSF fistula after paranasal sinus surgery: the Northern Norwegian experience. Rhinology 2007; 45: 305307.
  • 109
    Inoue T, Kibata K, Suzuki M, Nakamura S, Motoda R, Orita K. Identification of a vascular endothelial growth factor (VEGF) antagonist, sFlt-1, from a human hematopoietic cell line NALM-16. FEBS Letters 2000; 469: 1418.
  • 110
    Gaudry M, Bregerie O, Andrieu V, El Benna J, Pocidalo MA, Hakim J. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 1997; 90: 41534161.
  • 111
    Perez-Ruiz M, Ros J, Morales-Ruiz M, et al. Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and bacterial lipopolysaccharide. Hepatology 1999; 29: 10571063.
  • 112
    Xiong M, Elson G, Legarda D, Leibovich SJ. Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. American Journal of Pathology 1998; 153: 587598.
  • 113
    Williams B, Quinn-Baker A, Gallacher B. Serum and platelet-derived growth factor-induced expression of vascular permeability factor mRNA by human vascular smooth muscle cells in vitro. Clinical Science (London) 1995; 88: 141147.
  • 114
    Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology. Cell Physiology 2001; 280: C1358C1366.
  • 115
    Reijneveld JC, Brandsma D, Boogerd W, et al. CSF levels of angiogenesis-related proteins in patients with leptomeningeal metastases. Neurology 2005; 65: 11201122.
  • 116
    Herrlinger U, Wiendl H, Renninger M, Forschler H, Dichgans J, Weller M. Vascular endothelial growth factor (VEGF) in leptomeningeal metastasis: diagnostic and prognostic value. British Journal of Cancer 2004; 91: 219224.
  • 117
    Peles E, Lidar Z, Simon AJ, Grossman R, Nass D, Ram Z. Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery 2004; 55: 562567.
  • 118
    Sampath P, Weaver CE, Sungarian A, Cortez S, Alderson L, Stopa EG. Cerebrospinal fluid (vascular endothelial growth factor) and serologic (recoverin) tumor markers for malignant glioma. Cancer Control 2004; 11: 174180.
  • 119
    Stockhammer G, Poewe W, Burgstaller S, et al. Vascular endothelial growth factor in CSF: A biological marker for carcinomatous meningitis. Neurology 2000; 54: 16701676.
  • 120
    Ribom D, Larsson A, Pietras K, Smits A. Growth factor analysis of low-grade glioma CSF: PDGF and VEGF are not detectable. Neurology Science 2003; 24: 7073.
  • 121
    Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. Journal of the Neurological Sciences 2005; 233: 183198.
  • 122
    Petzold A, Baker D, Pryce G, Keir G, Thompson EJ, Giovannoni G. Quantification of neurodegeneration by measurement of brain-specific proteins. Journal of Neuroimmunology 2003; 138: 4548.
  • 123
    Petzold A, Rejdak K, Belli A, et al. Axonal pathology in subarachnoid and intracerebral hemorrhage. Journal of Neurotrauma 2005; 22: 407414.
  • 124
    Lewis SB, Wolper RA, Miralia L, Yang C, Shaw G. Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. Journal of Cerebral Blood Flow and Metabolism 2008; 28: 12611271.
  • 125
    Petzold A, Keir G, Kay A, Kerr M, Thompson EJ. Axonal damage and outcome in subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry 2006; 77: 753759.
  • 126
    Nylen K, Csajbok LZ, Ost M, et al. CSF -Neurofilament correlates with outcome after aneurysmal subarachnoid hemorrhage. Neuroscience Letters 2006; 404: 132136.
  • 127
    Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Research 2003; 987: 2531.
  • 128
    Van Geel WJ, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. Journal of Immunological Methods 2005; 296: 179185.
  • 129
    Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003; 61: 17201725.
  • 130
    Norgren N, Sundstrom P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 2004; 63: 15861590.
  • 131
    Lim ET, Sellebjerg F, Jensen CV, et al. Acute axonal damage predicts clinical outcome in patients with multiple sclerosis. Multiple Sclerosis 2005; 11: 532536.
  • 132
    Petzold A, Eikelenboom MI, Keir G, et al. The new global multiple sclerosis severity score (MSSS) correlates with axonal but not glial biomarkers. Multiple Sclerosis 2006; 12: 325328.
  • 133
    Eikelenboom MJ, Petzold A, Lazeron RH, et al. Multiple sclerosis: neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 2003; 60: 219223.
  • 134
    Lim ET, Grant D, Pashenkov M, et al. Cerebrospinal fluid levels of brain specific proteins in optic neuritis 2. Multiple Sclerosis 2004; 10: 261265.
  • 135
    Miyazawa I, Nakashima I, Petzold A, Fujihara K, Sato S, Itoyama Y. High CSF neurofilament heavy chain levels in neuromyelitis optica. Neurology 2007; 68: 865867.
  • 136
    Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. Journal of Neurochemistry 1996; 67: 20132018.
  • 137
    Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006; 66: 852856.
  • 138
    Gisslen M, Rosengren L, Hagberg L, Deeks SG, Price RW. Cerebrospinal fluid signs of neuronal damage after antiretroviral treatment interruption in HIV-1 infection. AIDS Research and Therapy 2005; 2: 6.
  • 139
    Hagberg L, Fuchs D, Rosengren L, Gisslen M. Intrathecal immune activation is associated with cerebrospinal fluid markers of neuronal destruction in AIDS patients. Journal of Neuroimmunology 2000; 102: 5155.
  • 140
    Gisslen M, Hagberg L, Brew BJ, Cinque P, Price RW, Rosengren L. Elevated cerebrospinal fluid neurofilament light protein concentrations predict the development of AIDS dementia complex. Journal of Infectious Diseases 2007; 195: 17741778.
  • 141
    Abdulle S, Mellgren A, Brew BJ, et al. CSF neurofilament protein (NFL) – a marker of active HIV-related neurodegeneration. Journal of Neurology 2007; 254: 10261032.
  • 142
    Mellgren A, Price RW, Hagberg L, Rosengren L, Brew BJ, Gisslen M. Antiretroviral treatment reduces increased CSF neurofilament protein (NFL) in HIV-1 infection. Neurology 2007; 69: 15361541.
  • 143
    Brettschneider J, Petzold A, Sussmuth SD, et al. Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Movement Disorders 2006; 21: 22242227.
  • 144
    Holmberg B, Rosengren L, Karlsson JE, Johnels B. Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson’s disease. Movement Disorders 1998; 13: 7077.
  • 145
    Abdo WF, Bloem BR, Van Geel WJ, Esselink RA, Verbeek MM. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiology of Aging 2007; 28: 742747.
  • 146
    Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews 2001; 81: 871927.
  • 147
    Van Engelen BG, Lamers KJ, Gabreels FJ, Wevers RA, Van Geel WJ, Borm GF. Age-related changes of neuron-specific enolase, S-100 protein, and myelin basic protein concentrations in cerebrospinal fluid. Clinical Chemistry 1992; 38: 813816.
  • 148
    Cornblath DR, Griffin JW, Tennekoon GI. Immunoreactive myelin basic protein in cerebrospinal fluid of patients with peripheral neuropathies. Annals of Neurology 1986; 20: 370372.
  • 149
    Edstrom S, Hanner P, Andersen O, Rosenhall U, Vahlne A, Karlsson B. Elevated levels of myelin basic protein in CSF in relation to auditory brainstem responses in Bell’s palsy. Acta Oto-Laryngologica 1987; 103: 198203.
  • 150
    Davies L, McLeod JG, Muir A, Hensley WJ. Diagnostic value of cerebrospinal fluid myelin basic protein in patients with neurological illness. Clinical and Experimental Neurology 1987; 24: 510.
  • 151
    Lamers KJ, Van Engelen BG, Gabreels FJ, Hommes OR, Borm GF, Wevers RA. Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders. Acta Neurologica Scandinavica 1995; 92: 247251.
  • 152
    Cohen SR, Herndon RM, McKhann GM. Radioimmunoassay of myelin basic protein in spinal fluid. An index of active demyelination. New England Journal of Medicine 1976; 295: 14551457.
  • 153
    Noppe M, Crols R, Andries D, Lowenthal A. Determination in human cerebrospinal fluid of glial fibrillary acidic protein, S-100 and myelin basic protein as indices of non-specific or specific central nervous tissue pathology. Clinica Chimica Acta 1986; 155: 143150.
  • 154
    Whitaker JN. Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis. Neurology 1977; 27: 911920.
  • 155
    Thomson AJ, Brazil J, Feighery C, et al. CSF myelin basic protein in multiple sclerosis. Acta Neurologica Scandinavica 1985; 72: 577583.
  • 156
    Cohen SR, Brune MJ, Herndon RM, McKhann GM. Cerebrospinal fluid myelin basic protein and multiple sclerosis. Advances in Experimental Medicine and Biology 1978; 100: 513519.
  • 157
    Martin-Mondiere C, Jacque C, Delassalle A, Cesaro P, Carydakis C, Degos JD. Cerebrospinal myelin basic protein in multiple sclerosis. Identification of two groups of patients with acute exacerbation. Archives of Neurology 1987; 44: 276278.
  • 158
    Sellebjerg F, Jensen CV, Christiansen M. Intrathecal IgG synthesis and autoantibody-secreting cells in multiple sclerosis. Journal of Neuroimmunology 2000; 2: 207215.
  • 159
    Warren KG, Catz I, McPherson TA. CSF myelin basic protein levels in acute optic neuritis and multiple sclerosis. Canadian Journal of Neurological Sciences 1983; 10: 235238.
  • 160
    Thompson AJ, Hutchinson M, Brazil J, Feighery C, Martin EA. A clinical and laboratory study of benign multiple sclerosis. Quarterly Journal of Medicine 1986; 58: 6980.
  • 161
    Thompson AJ, Brazil J, Hutchinson M, Feighery C. Three possible laboratory indexes of disease activity in multiple sclerosis. Neurology 1987; 37: 515519.
  • 162
    Barkhof F, Frequin ST, Hommes OR, et al. A correlative triad of gadolinium-DTPA MRI, EDSS, and CSF-MBP in relapsing multiple sclerosis patients treated with high-dose intravenous methylprednisolone. Neurology 1992; 42: 6367.
  • 163
    Sellebjerg F, Christiansen M, Jensen J, Frederiksen JL. Immunological effects of oral high-dose methylprednisolone in acute optic neuritis and multiple sclerosis. European Journal of Neurology 2000; 7: 281289.
  • 164
    Whitaker JN, Layton BA, Herman PK, Kachelhofer RD, Burgard S, Bartolucci AA. Correlation of myelin basic protein-like material in cerebrospinal fluid of multiple sclerosis patients with their response to glucocorticoid treatment. Annals of Neurology 1993; 33: 1017.
  • 165
    Sellebjerg F, Jensen CV, Larsson HB, Frederiksen JL. Gadolinium-enhanced magnetic resonance imaging predicts response to methylprednisolone in multiple sclerosis. Multiple Sclerosis 2003; 9: 102107.
  • 166
    Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clinical Chemistry 2003; 49: 16.
  • 167
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. REporting recommendations for tumour MARKer prognostic studies (REMARK). British Journal of Cancer 2005; 93: 387391.
  • 168
    Lewczuk P, Beck G, Ganslandt O, et al. International quality control survey of neurochemical dementia diagnostics. Neuroscience Letters 2006; 409: 14.
  • 169
    Bartosik-Psujek H, Archelos JJ. Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. Journal of Neurology 2004; 251: 414420.
  • 170
    Brettschneider J, Petzold A, Junker A, Tumani H. Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Multiple Sclerosis 2006; 12: 143148.
  • 171
    Martinez-Yelamos A, Saiz A, Bas J, Hernandez JJ, Graus F, Arbizu T. Tau protein in cerebrospinal fluid: a possible marker of poor outcome in patients with early relapsing-remitting multiple sclerosis. Neuroscience Letters 2004; 363: 1417.
  • 172
    Terzi M, Birinci A, Cetinkaya E, Onar MK. Cerebrospinal fluid total tau protein levels in patients with multiple sclerosis. Acta Neurologica Scandinavica 2007; 115: 325330.
  • 173
    Guimaraes I, Cardoso MI, Sa MJ. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Multiple Sclerosis 2006; 12: 354356.
  • 174
    Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid beta42 and normal tau levels in dementia with Lewy bodies. Neurology 2000; 54: 18751876.
  • 175
    Arai H, Morikawa Y, Higuchi M, et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochemical and Biophysical Research Communications 1997; 236: 262264.
  • 176
    Shoji M, Matsubara E, Murakami T, et al. Cerebrospinal fluid tau in dementia disorders: a large scale multicenter study by a Japanese study group. Neurobiology of Aging 2002; 23: 363370.
  • 177
    Gomez-Tortosa E, Gonzalo I, Fanjul S, et al. Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease. Archives of Neurology 2003; 60: 12181222.
  • 178
    Mollenhauer B, Cepek L, Bibl M, et al. Tau protein, Abeta42 and S-100B protein in cerebrospinal fluid of patients with dementia with Lewy bodies. Dementia and Geriatric Cognitive Disorders 2005; 19: 164170.
  • 179
    Mollenhauer B, Bibl M, Wiltfang J, et al. Total tau protein, phosphorylated tau (181p) protein, beta-amyloid(1-42), and beta-amyloid(1-40) in cerebrospinal fluid of patients with dementia with Lewy bodies. Clinical Chemistry and Laboratory Medicine 2006; 44: 192195.
  • 180
    Andersen C, Froelich FS, Ostberg P, Lannfelt L, Wahlund L. Tau protein in cerebrospinal fluid from semantic dementia patients. Neuroscience Letters 2000; 294: 155158.
  • 181
    Pijnenburg YA, Schoonenboom SN, Barkhof F, et al. CSF biomarkers in frontotemporal lobar degeneration: relations with clinical characteristics, apolipoprotein E genotype, and neuroimaging. Journal of Neurology, Neurosurgery and Psychiatry 2006; 77: 246248.
  • 182
    Riemenschneider M, Wagenpfeil S, Diehl J, et al. Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 2002; 58: 16221628.
  • 183
    Sjogren M, Davidsson P, Wallin A, et al. Decreased CSF-beta-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dementia and Geriatric Cognitive Disorders 2002; 13: 112118.
  • 184
    Holmberg B, Johnels B, Blennow K, Rosengren L. Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson’s disease and progressive supranuclear palsy. Movement Disorders 2003; 18: 186190.
  • 185
    Mollenhauer B, Trenkwalder C, Von AN, et al. Beta-amlyoid 1-42 and Tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dementia and Geriatric Cognitive Disorders 2006; 22: 200208.
  • 186
    Abdo WF, De JD, Hendriks JC, et al. Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Movement Disorders 2004; 19: 571579.
  • 187
    Abdo WF, Van De Warrenburg BP, Munneke M, et al. CSF analysis differentiates multiple-system atrophy from idiopathic late-onset cerebellar ataxia. Neurology 2006; 67: 474479.
  • 188
    Urakami K, Mori M, Wada K, et al. A comparison of tau protein in cerebrospinal fluid between corticobasal degeneration and progressive supranuclear palsy. Neuroscience Letters 1999; 259: 127129.
  • 189
    Noguchi M, Yoshita M, Matsumoto Y, Ono K, Iwasa K, Yamada M. Decreased beta-amyloid peptide42 in cerebrospinal fluid of patients with progressive supranuclear palsy and corticobasal degeneration. Journal of the Neurological Sciences 2005; 237: 6165.
  • 190
    Stefani A, Bernardini S, Panella M, et al. AD with subcortical white matter lesions and vascular dementia: CSF markers for differential diagnosis. Journal of the Neurological Sciences 2005; 237: 8388.
  • 191
    Jin K, Takeda A, Shiga Y, et al. CSF tau protein: a new prognostic marker for Guillain-Barre syndrome. Neurology 2006; 67: 14701472.
  • 192
    Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L. CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology 2005; 65: 14901492.
  • 193
    Franz G, Beer R, Kampfl A, et al. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 2003; 60: 14571461.
  • 194
    Ost M, Nylen K, Csajbok L, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 2006; 67: 16001604.
  • 195
    Kay AD, Petzold A, Kerr M, Keir G, Thompson E, Nicoll JA. Alterations in cerebrospinal fluid apolipoprotein E and amyloid beta-protein after traumatic brain injury. Journal of Neurotrauma 2003; 20: 943952.
  • 196
    Ågren-Wilsson A, Lekman A, Sjoberg W, et al. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurologica Scandinavica 2007; 116: 333339.
  • 197
    Kapaki EN, Paraskevas GP, Tzerakis NG, et al. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. European Journal of Neurology 2007; 14: 168173.
  • 198
    Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Archives of Neurology 2002; 59: 15531562.
  • 199
    Hong SC, Lin L, Jeong JH, et al. A study of the diagnostic utility of HLA typing, CSF hypocretin-1 measurements, and MSLT testing for the diagnosis of narcolepsy in 163 Korean patients with unexplained excessive daytime sleepiness. Sleep 2006; 29: 14291438.
  • 200
    Kanbayashi T, Inoue Y, Chiba S, et al. CSF hypocretin-1 (orexin-A) concentrations in narcolepsy with and without cataplexy and idiopathic hypersomnia. Journal of Sleep Research 2002; 11: 9193.
  • 201
    Krahn LE, Pankratz VS, Oliver L, Boeve BF, Silber MH. Hypocretin (orexin) levels in cerebrospinal fluid of patients with narcolepsy: relationship to cataplexy and HLA DQB1*0602 status. Sleep 2002; 25: 733736.
  • 202
    Ebrahim IO, Sharief MK, De LS, et al. Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. Journal of Neurology, Neurosurgery and Psychiatry 2003; 74: 127130.
  • 203
    Dauvilliers Y, Baumann CR, Carlander B, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. Journal of Neurology, Neurosurgery and Psychiatry 2003; 74: 16671673.
  • 204
    Heier MS, Evsiukova T, Vilming S, Gjerstad MD, Schrader H, Gautvik K. CSF hypocretin-1 levels and clinical profiles in narcolepsy and idiopathic CNS hypersomnia in Norway. Sleep 2007; 30: 969973.
  • 205
    Van De Langerijt B, Gijtenbeek JM, De Reus HP, et al. CSF levels of growth factors and plasminogen activators in leptomeningeal metastases. Neurology 2006; 67: 114119.
  • 206
    Husain N, Awasthi S, Haris M, Gupta RK, Husain M. Vascular endothelial growth factor as a marker of disease activity in neurotuberculosis. Journal of Infection 2008; 56: 114119.
  • 207
    Matsuyama W, Hashiguchi T, Umehara F, et al. Expression of vascular endothelial growth factor in tuberculous meningitis. Journal of the Neurological Sciences 2001; 186: 7579.
  • 208
    Tsai HC, Liu YC, Lee SS, Chen ER, Yen CM. Vascular endothelial growth factor is associated with blood brain barrier dysfunction in eosinophilic meningitis caused by Angiostrongylus cantonensis infection. American Journal of Tropical Medicine and Hygiene 2007; 76: 592595.
  • 209
    Kastenbauer S, Angele B, Sporer B, Pfister HW, Koedel U. Patterns of protein expression in infectious meningitis: a cerebrospinal fluid protein array analysis. Journal of Neuroimmunology 2005; 164: 134139.
  • 210
    Coenjaerts FE, Van Der FM, Mwinzi PN, et al. Intrathecal production and secretion of vascular endothelial growth factor during Cryptococcal Meningitis. Journal of Infectious Diseases 2004; 190: 13101317.
  • 211
    Van Der FM, Hoppenreijs S, Van Rensburg AJ, et al. Vascular endothelial growth factor and blood-brain barrier disruption in tuberculous meningitis. Pediatric Infectious Disease Journal 2004; 23: 608613.
  • 212
    Sporer B, Koedel U, Paul R, Eberle J, Arendt G, Pfister HW. Vascular endothelial growth factor (VEGF) is increased in serum, but not in cerebrospinal fluid in HIV associated CNS diseases. Journal of Neurology, Neurosurgery and Psychiatry 2004; 75: 298300.
  • 213
    Moreau C, Devos D, Brunaud-Danel V, et al. Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS. Journal of Neurology, Neurosurgery and Psychiatry 2006; 77: 255257.
  • 214
    Just N, Moreau C, Lassalle P, et al. High erythropoietin and low vascular endothelial growth factor levels in cerebrospinal fluid from hypoxemic ALS patients suggest an abnormal response to hypoxia. Neuromuscular Disorders 2007; 17: 169173.
  • 215
    Nagata T, Nagano I, Shiote M, et al. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurological Research 2007; 29: 772776.
  • 216
    Devos D, Moreau C, Lassalle P, et al. Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 2004; 62: 21272129.
  • 217
    Ilzecka J. Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clinical Neurology and Neurosurgery 2004; 106: 289293.
  • 218
    Foyouzi N, Norwitz ER, Tsen LC, Buhimschi CS, Buhimschi IA. Placental growth factor in the cerebrospinal fluid of women with preeclampsia. International Journal of Gynaecology and Obstetrics 2006; 92: 3237.
  • 219
    Blasko I, Lederer W, Oberbauer H, et al. Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dementia and Geriatric Cognitive Disorders 2006; 21: 915.
  • 220
    Tarkowski E, Issa R, Sjogren M, et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiology of Aging 2002; 23: 237243.
  • 221
    Scheufler KM, Drevs J, Van V, et al. Implications of vascular endothelial growth factor, sFlt-1, and sTie-2 in plasma, serum and cerebrospinal fluid during cerebral ischemia in man. Journal of Cerebral Blood Flow and Metabolism 2003; 23: 99110.
  • 222
    Borel CO, McKee A, Parra A, et al. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 2003; 34: 427433.
  • 223
    Watanabe O, Maruyama I, Arimura K, et al. Overproduction of vascular endothelial growth factor/vascular permeability factor is causative in Crow-Fukase (POEMS) syndrome. Muscle and Nerve 1998; 21: 13901397.
  • 224
    Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. European Journal of Neurology 2007; 14: 13291333.
  • 225
    Brettschneider J, Petzold A, Schottle D, Claus A, Riepe M, Tumani H. The neurofilament heavy chain (NfH) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders 2006; 6: 291295.
  • 226
    De Jong D, Jansen RW, Pijnenburg YA, et al. CSF neurofilament proteins in the differential diagnosis of dementia. Journal of Neurology, Neurosurgery and Psychiatry 2007; 78: 936938.
  • 227
    Petzold A, Keir G, Warren J, Fox N, Rossor MN. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegenerative Disease 2007; 4: 185194.
  • 228
    Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia. Neurology 1999; 52: 10901093.
  • 229
    Sjögren M, Blomberg M, Jonsson M, et al. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. Journal of Neuroscience Research 2001; 66: 510516.
  • 230
    Pijnenburg YA, Janssen JC, Schoonenboom NS, et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer’s disease and controls. Dementia and Geriatric Cognitive Disorders 2007; 23: 225230.
  • 231
    Sjogren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 2000; 54: 19601964.
  • 232
    Sjogren M, Wallin A. Pathophysiological aspects of frontotemporal dementia--emphasis on cytoskeleton proteins and autoimmunity. Mechanisms of Ageing and Development 2001; 122: 19231935.
  • 233
    Wallin A, Sjogren M. Cerebrospinal fluid cytoskeleton proteins in patients with subcortical white-matter dementia. Mechanisms of Ageing and Development 2001; 122: 19371949.
  • 234
    Guez M, Hildingsson C, Rosengren L, Karlsson K, Toolanen G. Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. Journal of Neurotrauma 2003; 20: 853858.
  • 235
    Tullberg M, Hultin L, Ekholm S, Mansson JE, Fredman P, Wikkelso C. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurologica Scandinavica 2002; 105: 417426.
  • 236
    Tisell M, Tullberg M, Mansson JE, Fredman P, Blennow K, Wikkelso C. Differences in cerebrospinal fluid dynamics do not affect the levels of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. European Journal of Neurology 2004; 11: 1723.
  • 237
    Tullberg M, Blennow K, Mansson JE, Fredman P, Tisell M, Wikkelso C. Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. European Journal of Neurology 2007; 14: 248254.
  • 238
    Petzold A, Hinds N, Murray NM, et al. CSF neurofilament levels: a potential prognostic marker in Guillain-Barre syndrome. Neurology 2006; 67: 10711073.
  • 239
    Rosen H, Karlsson JE, Rosengren L. CSF levels of neurofilament is a valuable predictor of long-term outcome after cardiac arrest. Journal of the Neurological Sciences 2004; 221: 1924.
  • 240
    Skoldenberg B, Aurelius E, Hjalmarsson A, et al. Incidence and pathogenesis of clinical relapse after herpes simplex encephalitis in adults. Journal of Neurology 2006; 253: 163170.