• 1
    Junqueira, L.C.U. and Carneiro, J. Skin. In: Basic Histology: Text & Atlas. 11th edn., (Carneiro, J., and Kelly, R.O., eds.), pp. 360372. McGraw-Hill, (2005).
  • 2
    Braun-Falco, O., Plewig, G., Wolff, H.H. and Burgdorf, W.H.C. Basic Science and Principles of Dermatologic Diagnosis. In: Dermatology, 2nd edn., Burgdorf, W.H.C., ed.), pp. 152. Springer, Berlin (2000).
  • 3
    Young, B. and Heath, J.W. Organ systems – Skin. In: Wheater’s Functional Histology. 4th edn., Young, B. and Heath, J.W., eds.), pp. 15771. Churchill Livingston, Harcourt Publishers Limited, London (2000).
  • 4
    Landmann, L. The epidermal permeability barrier. Anat. Embryol. 178, 113 (1988).
  • 5
    Rougier, A., Lotte, C., Corcuff, P. and Maibach, H. Relationship between skin permeability and corneocyte size according to anatomic site, age and sex in man. J. Soc. Cosmet. Chem. 39, 1526 (1988).
  • 6
    Oestmann, E., Lavrijsen, A.P., Hermans, J. and Ponec, M. Skin barrier function in healthy volunteers as assessed by transepidermal water loss and vascular response to hexyl nicotinate: intra- and inter-individual variability. Br. J. Dermatol. 128, 130106 (1993).
  • 7
    Berardesca, E. and Maibach, H. Racial differences in skin pathophysiology. J. Am. Acad. Dermatol. 34, 66772 (1996).
  • 8
    Nikolovski, J., Stamatas, G.N., Kollias, N. and Wiegand, B.C. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J. Invest. Dermatol. 128, 17281736 (2008).
  • 9
    Elias, P. The skin barrier as an innate immune element. Semin. Immunopathol. 29, 314 (2007).
  • 10
    Marks, R. The stratum corneum barrier: the final frontier. J. Nutr. 134, 2017S2021S (2004).
  • 11
    Michaels, A.S., Chandrasekaran, S.K. and Shaw, J.E. Drug permeation through human skin: Theory and in vitro experimental measurement. AIChE 21, 985996 (1975).
  • 12
    Monteiro-Riviere, N. Structure and function of skin. In: Dermal Absorption Models in Toxicology and Pharmacology (Riviere, J.E., ed.), pp. 120. Taylor & Francis, Boca Raton (2006).
  • 13
    Haftek, M., Teillon, M.H. and Schmitt, D. Stratum corneum, corneodesmosomes and ex vivo percutaneous penetration. Microsc. Res. Tech. 43, 242249 (1998).
  • 14
    Cork, M.J., Robinson, D.A., Vasilopoulos, Y. et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J. Allergy Clin. Immunol. 118, 321 (2006).
  • 15
    Milstone, L.M. Epidermal desquamation. J. Dermatol. Sci. 36, 13140 (2004).
  • 16
    Plewig, G. and Jansen, T. Size and shape of corneocytes: variation with anatomic site and age. In: Bioengineering of the Skin: Skin Surface Imaging and Analysis (Wilhelm, K.-P., Elsner, P., Berardesca, E. and Maibach, H.I. eds.), pp. 181196. CRC Press, Boca Raton (1997).
  • 17
    Plewig, G. and Marples, R.R. Regional differences of cell sizes in the human stratum corneum. Part I. J. Invest. Dermatol. 54, 1318 (1970).
  • 18
    Roberts, D. and Marks, R. The determination of regional and age variations in the rate of desquamation: a comparison of four techniques. J. Invest. Dermatol. 74, 1316 (1980).
  • 19
    Pratchyapruit, W., Kikuchi, K., Gritiyarangasan, P., Aiba, S. and Tagami, H. Functional analyses of the eyelid skin constituting the most soft and smooth area on the face: contribution of its remarkably large superficial corneocytes to effective water-holding capacity of the stratum corneum. Skin Res. Technol. 13, 16975 (2007).
  • 20
    Machado, M., Hadgraft, J. and Lane, M.E. The relationship between transepidermal water loss and skin permeability. Int. J. Pharm. 384, 7377 (2009).
  • 21
    Plewig, G. Regional differences of cell sizes in the human stratum corneum. Part II. Effects of sex and age. J. Invest. Dermatol. 54, 1923 (1970).
  • 22
    Leveque, J.L., Corcuff, P., De Rigal, J. and Agache, P. In vivo studies of the evolution of physical properties of the human skin with age. Int. J. Dermatol. 23, 322329 (1984).
  • 23
    Leveque, J.L., Francois, G., Sojic, N. and Giron, F. A new technique to in vivo study the corneocyte features at the surface of the skin. Skin Res. Technol. 14, 468471 (2008).
  • 24
    Fluhr, J.W., Pelosi, A., Lazzerini, S., Dikstein, S. and Berardesca, E. Differences in corneocyte surface area in pre- and post-menopausal women. Assessment with the noninvasive videomicroscopic imaging of corneocytes method (VIC) under basal conditions. Skin Pharmacol. Appl. Skin Physiol. 14(Suppl. 1), 1016 (2001).
  • 25
    Corcuff, P., Lotte, C., Rougier, A. and Maibach, H.I. Racial differences in corneocytes. A comparison between black, white and oriental skin. Acta Derm. Venereol. 71, 146148 (1991).
  • 26
    Imhof, R.E., De Jesus, M.E.P., Xiao, P., Ciortea, L.I. and Berg, E.P. New developments in skin barrier measurements. 2009. in: Skin Moisturization, 2nd edn. Cosmetic Science and Technology Series. (Rawlings, A.V. and Leyden, J.J. eds.), pp. 463479. Informa Healthcare, New York (2009).
  • 27
    Pinnagoda, J., Tupker, R.A., Agner, T. and Serup, J. Guidelines for transepidermal water loss (TEWL) measurement. Contact Derm. 22, 164178 (1990).
  • 28
    Lotte, C., Rougier, A., Wilson, D.R. and Maibach, H.I. In vivo relationship between transepidermal water loss and percutaneous penetration of some organic compounds in man: effect of anatomic site. Arch. Dermatol. Res. 279, 351356 (1987).
  • 29
    Den Arend, J.A.C., De Haan, A.F.J. and Malten, K.E. Seasonal transepidermal water loss and impedance of forearm skin in atopics and non-atopics. Contact Derm. 19, 376390 (1988).
  • 30
    Berardesca, E., De Rigal, J., Leveque, J.L. and Maibach, H.I. In vivo biophysical characterisation of skin physiological differences in races. Dermatologica, 182, 8993 (1991).
  • 31
    Conti, A., Schiavi, M.E. and Seidenari, S. Capacitance, transepidermal water loss and causal level of sebum in healthy subjects in relation to site, sex and age. Int. J. Cosmet. Sci. 17, 7785 (1995).
  • 32
    Jang, H.Y., Park, C.W. and Lee, C.H. A study of transepidermal water loss at various anatomical sites of the skin. Br. J. Dermatol. 128, 130136 (1993).
  • 33
    Schnetz, E., Kuss, O., Schmitt, J., Diepgen, T.L., Kuhn, M. and Fartasch, M. Intra-and inter-individual variations in transepidermal water loss on the face: facial locations for bioengineering studies. Contact Derm. 40, 243247 (1999).
  • 34
    Chilcott, R.P. and Farrar, R. Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res. Technol. 6, 6469 (2000).
  • 35
    Marrakchi, S. and Maibach, H.I. Biophysical parameters of skin: map of human face, regional, and age-related differences. Contact Derm. 57, 2834 (2007).
  • 36
    Hammarlund, K. and Sedin, G. Transepidermal water loss in newborn infants. III. Relation to gestational age. Acta Paediatr. Scand. 68, 795801 (1979).
  • 37
    Sedin, G., Hammarlund, K. and Stromberg, B. Transepidermal water loss in full-term and pre-term infants. Acta Paediatr. Scand. Suppl. 305, 2731 (1983).
  • 38
    Yosipovitch, G., Maayan-Metzger, A., Merlob, P. and Sirota, L. Skin barrier properties in different body areas in neonates. Pediatrics, 106, 105108 (2000).
  • 39
    Kligman, A.M. Perspectives and problems in cutaneous gerontology. J. Invest. Dermatol. 73, 3946 (1979).
  • 40
    Roskos, K.V. and Guy, R.H. Assessment of skin barrier function using transepidermal water loss: effect of age. Pharm. Res. 6, 949953 (1989).
  • 41
    Wilhelm, K.-P., Cua, A.B. and Maibach, H.I. Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch. Dermatol. 127, 18061809 (1991).
  • 42
    Reed, J.T., Ghadially, R. and Elias, P.M. Skin type, but neither race nor gender, influence epidermal permeability barrier function. Arch. Dermatol. 131, 11341138 (1995).
  • 43
    Jacobi, U., Gautier, J., Sterry, W. and Lademann, J. Gender-related differences in the physiology of the stratum corneum. Dermatology 211, 312317 (2005).
  • 44
    Berardesca, E. and Maibach, H.I. Racial differences in sodium lauryl sulphate induced cutaneous irritation: black and white. Contact Derm. 18, 6570 (1988).
  • 45
    Berardesca, E. and Maibach, H.I. Sodium-lauryl-sulphate-induced cutaneous irritation. Comparison of white and Hispanic subjects. Contact Derm. 19, 13640 (1988).
  • 46
    Kompaore, F., Marty, J.P. and Dupont, C. In vivo evaluation of the stratum corneum barrier function in blacks, Caucasians and Asians with two noninvasive methods. Skin Pharmacol. 6, 200207 (1993).
  • 47
    Sugino, K., Imokawa, G. and Maibach, H.I. Ethnic difference of varied stratum corneum function in relation to stratum corneum lipids (abstr). J. Invest. Dermatol. 101, 482 (1993).
  • 48
    Warrier, A.G., Kligman, A.M., Harper, R.A., Bowman, J. and Wickett, R.R. A comparison of black and white skin using noninvasive methods. J. Soc. Cosmet. Chem. 47, 229240 (1996).
  • 49
    Berardesca, E., Pirot, F., Singh, M. and Maibach, H. Differences in stratum corneum pH gradient when comparing white Caucasian and black African-American skin. Br. J. Dermatol. 139, 855857 (1998).
  • 50
    Yosipovitch, G., Goon, A.T.J., Chan, Y.H. and Goh, C.L. Are there any differences in skin barrier function, integrity and skin blood flow between different subpopulations of Asians and Caucasians? Exog. Dermatol. 1, 302306 (2002).
  • 51
    Grimes, P., Edison, B.L., Green, B.A. and Wildnauer, R.H. Evaluation of inherent differences between African American and white skin surface properties using subjective and objective measures. Cutis 73, 392396 (2004).
  • 52
    Fulton, G.P., Farber, E.M. and Moreci, A.P. The mechanism of action of rubefacients. J. Invest. Dermatol. 33, 317325 (1959).
  • 53
    Cronin, E. and Stoughton, R.B. Percutaneous absorption. Regional variations and the effect of hydration and epidermal stripping. Br. J. Dermatol. 74, 265272 (1962).
  • 54
    Barrett, C.W., Hadgraft, J.W. and Sarkany, I. The influence of vehicles on skin penetration. J. Pharm. Pharmacol. 16(Suppl), 10 (1964).
  • 55
    Tur, E., Guy, R.H., Tur, M. and Maibach, H.I. Noninvasive assessment of local nicotinate pharmacodynamics by photoplethysmography. J. Invest. Dermatol. 80, 499503 (1983).
  • 56
    Leopold, C.S. and Maibach, H.I. Effect of lipophilic vehicles on in vivo skin penetration of methyl nicotinate in different races. Int. J. Pharm. 139, 161167 (1996).
  • 57
    Bonina, F.P., Montenegro, L., Scrofani, N., Esposito, E., Cortesi, R., Menegatti, E. and Nastruzzi, C. Effects of phospholipid based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. J. Control Release 34, 5363 (1995).
  • 58
    Stoughton, R.B., Clendenning, W.E. and Kruse, D. Percutaneous absorption of nicotinic acid derivatives. J. Invest. Dermatol. 35, 337341 (1960).
  • 59
    Fountain, R.B., Baker, B.S., Hadgraft, J.W. and Sarkany, I. The rate of absorption and duration of action of four different solutions of methyl nicotinate. Br. J. Dermatol. 81, 202206 (1969).
  • 60
    Tur, E., Maibach, H.I. and Guy, R.H. Percutaneous penetration of methyl nicotinate at three anatomic sites: evidence for an appendageal contribution to transport? Skin Pharmacol. 4, 230234 (1991).
  • 61
    Issachar, N., Gall, Y., Borrel, M.T. and Poelman, M.C. Correlation between percutaneous penetration of methyl nicotinate and sensitive skin, using laser Doppler imaging. Contact Derm. 39, 182186 (1998).
  • 62
    Albery, W.J. and Hadgraft, J. Percutaneous absorption: in vivo experiments. J. Pharm. Pharmacol. 31, 1407 (1979).
  • 63
    Albery, W.J., Guy, R.H. and Hadgraft, J. Percutaneous absorption: transport in the dermis. Int. J. Pharm. 15, 125148 (1983).
  • 64
    Tur, E., Maibach, H.I. and Guy, R.H. Spatial variability of vasodilatation in human forearm skin. Br. J. Dermatol. 113, 197203 (1985).
  • 65
    Elsner, P. and Maibach, H.I. Cutaneous responses to topical methyl nicotinate in human forearm and vulvar skin. J. Dermatol. Sci. 2, 341345 (1991).
  • 66
    Jacobi, U., Kaiser, M., Sterry, W. and Lademann, J. Kinetics of blood flow after topical application of benzyl nicotinate on different anatomic sites. Arch. Dermatol. Res. 298, 291300 (2006).
  • 67
    Guy, R.H., Tur, E., Bjerke, S. and Maibach, H.I. Are there age and racial differences to methyl nicotinate-induced vasodilatation in human skin? J. Am. Acad. Dermatol. 12, 10011006 (1985).
  • 68
    Roskos, K.V., Bircher, A.J., Maibach, H.I. and Guy, R.H. Pharmacodynamic measurements of methyl nicotinate percutaneous absorption: the effect of aging on microcirculation. Br. J. Dermatol. 122, 165171 (1990).
  • 69
    Gean, C.J., Tur, E., Maibach, H.I. and Guy, R.H. Cutaneous responses to topical methyl nicotinate in black, oriental, and caucasian subjects. Arch. Dermatol. Res. 281, 9598 (1989).
  • 70
    Berardesca, E. and Maibach, H. Acta dermatovenereol. Racial differences in pharmacodynamic response to nicotinates in vivo in human skin: black and white. Acta Dermatovenereol. 70, 6366 (1990).
  • 71
    Kompaore, F. and Tsuruta, H. In vivo differences between Asian, black and white in the stratum corneum barrier function. Int Arch Occup Environ Health 65(Suppl. 1), S223S225 (1993).
  • 72
    Leopold, C.S. and Lippold, B.C. Enhancing effects of lipophilic vehicles on skin penetration of methyl nicotinate in vivo. J. Pharmac Sci. 84, 195198 (1995).
  • 73
    Puttnam, N.A. Attenuated total reflectance studies of the skin. J. Soc. Cosmet. Chem. 23, 209226 (1972).
  • 74
    Potts, R.O. In vivo measurement of water content of the stratum corneum using infrared spectroscopy: a review. Cosmet Toilet 100, 2731 (1985).
  • 75
    Boncheva, M., Damien, F. and Normand, V. Molecular organization of the lipid matrix in intact stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta 1778, 13441355 (2008).
  • 76
    Mendelsohn, R., Flach, C.R. and Moore, D.J. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta 1758, 923933 (2006).
  • 77
    Oertel, R.P. Protein conformational changes induced in human SC by organic sulfoxides: an IR spectroscopic investigation. Biopolymers 16, 23292345 (1977).
  • 78
    Gloor, M., Heymann, B. and Stuhlert, T. Infrared-spectroscopic determination of the water content of the horny layer in healthy subjects and in patients suffering from atopic dermatitis. Arch. Dermatol. Res. 271, 429436 (1981).
  • 79
    Barry, B.W., Edwards, H.G.M. and Williams, A.C. Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands. J. Raman Spect. 23, 641645 (1992).
  • 80
    Anderson, A.S. and Fulton Jr, J.E.. Sebum: analysis by infrared spectroscopy. J. Invest. Dermatol. 60, 115120 (1973).
  • 81
    Bommannan, D., Potts, R.O. and Guy, R.H. Examination of stratum corneum barrier function in vivo by infrared spectroscopy. J. Invest. Dermatol. 95, 403408 (1990).
  • 82
    Brancaleon, L., Bamberg, M.P., Sakamaki, T. and Kollias, N. Attenuated total reflection-Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J. Invest. Dermatol. 116, 380386 (2001).