Faults and fault properties in hydrocarbon flow models

Authors


Corresponding author: T. Manzocchi, Fault Analysis Group, UCD School of Geological Sciences, University College Dublin, Dublin 4, Ireland.
Email: tom@fag.ucd.ie. Tel: +353 1 716 2605. Fax: +353 1 716 2607.

Abstract

Geofluids (2010) 10, 94–113

Abstract

The petroleum industry uses subsurface flow models for two principal purposes: to model the flow of hydrocarbons into traps over geological time, and to simulate the production of hydrocarbon from reservoirs over periods of decades or less. Faults, which are three-dimensional volumes, are approximated in both modelling applications as planar membranes onto which predictions of the most important fault-related flow properties are mapped. Faults in porous clastic reservoirs are generally baffles or barriers to flow and the relevant flow properties are therefore very different to those which are important in conductive fracture flow systems. A critical review and discussion is offered on the work-flows used to predict and model capillary threshold pressure for exploration fault seal analysis and fault transmissibility multipliers for production simulation, and of the data from which the predictions derive. New flow simulation models confirm that failure of intra-reservoir sealing faults can occur during a reservoir depressurization via a water-drive mechanism, but contrary to anecdotal reports, published examples of production-induced seal failure are elusive. Ignoring the three-dimensional structure of fault zones can sometimes have a significant influence on production-related flow, and a series of models illustrating flow associated with relay zones are discussed.

Ancillary