SEARCH

SEARCH BY CITATION

References

  • 1
    Pfaller MA, Diekema DJ, Jones RN et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 2001; 39: 32543259.
  • 2
    Coleman DC, Bennet DJ, Sullivan PJ et al. Oral Candida in HIV infection and AIDS: new perspectives and new approaches. Crit Rev Microbiol 1993; 19: 6182.
  • 3
    McNeil MM, Nash SL, Hajjeh RA et al. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis 2001; 33: 641647.
  • 4
    Calderone RA, ed., Candida and candidiasis, 1st edn. Washington, DC: ASM Press, 2002.
  • 5
    Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 2005; 43: 285318.
  • 6
    Thevelein JM, Hohmann S. Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 1995; 20: 310.
  • 7
    Zähringer H, Thevelein JM, Nwaka S. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 2000; 35: 397406.
  • 8
    Argüelles JC. Physiological roles of trehalose in bacteria and yeast: a comparative analysis. Arch Microbiol 2000; 174: 217224.
  • 9
    Pedreño Y, Maicas S, Argüelles JC, Sentandreu R, Valentin E. The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans. J Biol Chem 2004; 279: 4085240860.
  • 10
    Álvarez-Peral FJ, Zaragoza O, Pedreño Y, Argüelles JC. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 2002; 148: 25992606.
  • 11
    Zaragoza O, Blázquez MA, Gancedo C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6P-synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 1998; 180: 38093815.
  • 12
    Bistoni F, Baccarini M, Blasi E, Marconi P, Puccetti P, Garaci E. Correlation between in vivo and in vitro studies of modulation of resistance to experimental Candida albicans infection by cyclophosphamide in mice. Infect Immun 1983; 40: 4655.
  • 13
    Qian Q, Jutila MA, Van Rooijen N, Cutler JE. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 1994; 152: 50005008.
  • 14
    Vazquez-Torres A, Balish E. Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 1997; 61: 170192.
  • 15
    Marodi L, Korchak HM, Johnston RB. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol 1991; 146: 27832789.
  • 16
    Marodi L, Forehand JR, Johnston RB. Mechanisms of host defense against Candida species. II. Biochemical basis for the killing of Candida by mononuclear phagocytes. J Immunol 1991; 146: 27902794.
  • 17
    Poulain D, Jouault T. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol 2004; 7: 342349.
  • 18
    Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 1999; 37: 375389.
  • 19
    Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 2003; 100: 1100711012.
  • 20
    Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 2004; 3: 10761087.
  • 21
    Stanley VC, Hurley R. The growth of Candida species in cultures of mouse peritoneal macrophages. J Pathol 1969; 97: 357366.
  • 22
    Ibata-Ombetta S, Idziorek T, Trinel P-A, Poulain D, Jouault T. Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 2003; 278: 1308613093.
  • 23
    Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics 1993; 134: 717728.
  • 24
    Pedreño Y, Gimeno-Alcañiz JV, Matallana E, Argüelles JC. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol 2002; 77: 494499.
  • 25
    Krautgartner WD, Vitkov L, Hannig M. Glycocalyx morphology of Candida albicans. Microsci Res Tech 2003; 61: 409413.
  • 26
    González-Párraga P, Hernández JA, Argüelles JC. Role of antioxidant enzymatic defences against oxidative stress (H2O2) and the acquisition of oxidative tolerance in Candida albicans. Yeast 2003; 20: 11611169.
  • 27
    Blázquez MA, Stucka R, Feldmann H, Gancedo C. Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. J Bacteriol 1994; 176: 38953902.
  • 28
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265275.
  • 29
    Argüelles JC, Rodríguez T, Alvarez-Peral FJ. Trehalose hydrolysis is not required for human serum-induced dimorphic transition in Candida albicans: evidence from a tps1/tps1 mutant deficient in trehalose synthesis. Res Microbiol 1999; 150: 521529.
  • 30
    Romani L, Bistoni F, Puccetti P. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr Opin Microbiol 2003; 6: 338343.
  • 31
    Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W, eds, Current protocols in immunology, 2nd edn. New York: Wiley, 2002.
  • 32
    Masuoka J, Hazen KC. Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains. Infect Immun 2004; 72: 62306236.
  • 33
    Martchenko M, Alarco AM, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 2004; 15: 456467.
  • 34
    Marcil A, Harcus D, Thomas DY, Whiteway M. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infect Immun 2002; 70: 63196629.
  • 35
    Marodi L, Schreiber S, Anderson DC, MacDermott RP, Korchak HM, Johnston RB. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J Clin Invest 1993; 91: 25962601.
  • 36
    Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209212.
  • 37
    Baltch AL, Smith RP, Franke MA, Ritz WJ, Michelsen PB, Bopp LH. Effects of cytokines and fluconazole on the activity of human monocytes against Candida albicans. Antimicrob Agents Chemother 2001; 45: 96104.
  • 38
    Zaragoza O, González-Párraga P, Pedreño Y, Alvarez-Peral FJ, Argüelles JC. Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans. Int Microbiol 2003; 6: 121125.
  • 39
    Chauhan N, Inglis D, Roman E et al. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell 2003; 2: 10181024.
  • 40
    Enjalbert B, Nantel A, Whiteway M. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 2003; 14: 14601467.