SEARCH

SEARCH BY CITATION

References

  • 1
    Giske CG, Sundsfjord AS, Kahlmeter G et al. Redefining extended-spectrum β-lactamases: balancing science and clinical need. J Antimicrob Chemother 2009; 63: 14.
  • 2
    Samuelsen Ø, Naseer U, Tofteland S et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother 2009; 63: 654658.
  • 3
    Ørstavik I, Ødegaard K. A simple test for penicillinase production in Staphylococcus aureus. Acta Pathol Microbiol Scand B Microbiol Immunol 1971; 79: 855856.
  • 4
    Anderson KF, Lonsway DR, Rasheed JK et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 2007; 45: 27232725.
  • 5
    Tsakris A, Kristo I, Poulou A et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009; 47: 362367.
  • 6
    Vatopoulos A. High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece—a review of the current evidence. Euro Surveill 2008; 13: 16.
  • 7
    Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9: 228236.
  • 8
    Kitchel B, Rasheed JK, Patel JB et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae in the United States: clonal expansion of MLST sequence type 258. Antimicrob Agents Chemother 2009; 53: 33653370.
  • 9
    Woodford N, Zhang J, Warner M et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother 2008; 62: 12611264.
  • 10
    Doumith M, Ellington MJ, Livermore DM et al. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 2009; 63: 659667.
  • 11
    Kimura S, Ishii Y, Yamaguchi K. Evaluation of dipicolinic acid for detection of IMP- or VIM-type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 2005; 53: 241244.
  • 12
    Galani I, Rekatsina PD, Hatzaki D et al. Evaluation of different laboratory tests for the detection of metallo-β-lactamase production in Enterobacteriaceae. J Antimicrob Chemother 2008; 61: 548553.
  • 13
    Segal H, Elisha BG. Use of Etest MBL strips for the detection of carbapenemases in Acinetobacter baumannii. J Antimicrob Chemother 2005; 56: 598.
  • 14
    Pasteran F, Mendez T, Rapoport M, Guerriero L, Corso A. Controlling the false positive results of the Hodge and Masuda assays for class A carbapenemase detection in species of Enterobacteriaceae. J Clin Microbiol 2010; 48: 13231332.
  • 15
    Carvalhaes CG, Picão RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother 2010; 65: 249251.
  • 16
    Giakkoupi P, Pappa O, Polemis M et al. Emerging Klebsiella pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob Agents Chemother 2009; 53: 40484050.
  • 17
    Daikos GL, Petrikkos P, Psichogiou M et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother 2009; 53: 18681873.