• 1
    Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother 2009; 64 (suppl 1): 310.
  • 2
    Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657686.
  • 3
    Nordmann P. Trends in β-lactam resistance among Enterobacteriaceae. Clin Infect Dis 1998; 27 (suppl 1): 100106.
  • 4
    Yang D, Guo Y, Zhang Z. Combined porin loss and extended spectrum β-lactamase production is associated with an increasing imipenem minimal inhibitory concentration in clinical Klebsiella pneumoniae strains. Curr Microbiol 2009; 58: 366370.
  • 5
    Girlich D, Poirel L, Nordmann P. CTX-M expression and selection of ertapenem resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2009; 53: 832834.
  • 6
    Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of blaACT-1β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob Agents Chemother 2006; 50: 33963406.
  • 7
    Kohler T, Michea-Hanzehpour M, Epp SF, Pechere J-C. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother 1999; 43: 424427.
  • 8
    Masuda N, Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1992; 36: 18471851.
  • 9
    Szabo D, Silveira F, Hujer AM et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 2006; 50: 28332835.
  • 10
    Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003; 51: 911.
  • 11
    Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50: 16331641.
  • 12
    Bratu S, Landman D, Haag R et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York city: a new threat to our antibiotic armamentarium. Arch Intern Med 2005; 165: 14301435.
  • 13
    Hidron AI, Edwards JR, Patel J et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 2008; 29: 9961011.
  • 14
    Schjorring S, Struve C, Krogfelt KA. Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J Antimicrob Chemother 2008; 62: 10861093.
  • 15
    Ogawa W, Li DW, Yu P et al. Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull 2005; 28: 15051508.
  • 16
    Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 (suppl 1): 516.
  • 17
    Miranda G, Kelly C, Solorzano F, Leanos B, Coria R, Patterson JE. Use of pulsed-field gel electrophoresis typing to study an outbreak of infection due to Serratia marcescens in a neonatal intensive care unit. J Clin Microbiol 1996; 34: 31383141.
  • 18
    Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7: 8891.
  • 19
    Gniadkowski M, Schneider I, Pałucha A, Jungwirth J, Mikiewicz B, Bauernfeind A. Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing β-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob Agents Chemother 1998; 42: 827832.
  • 20
    Park YJ, Lee S, Kim YR, Oh EJ, Woo GJ, Lee K. Occurrence of extended-spectrum β-lactamases and plasmid-mediated AmpC β-lactamases among Korean isolates of Proteus mirabilis. J Antimicrob Chemother 2006; 57: 156158.
  • 21
    Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007; 59: 321322.
  • 22
    Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48: 1522.
  • 23
    Wu T-L, Siu LK, Su L-H et al. Outer membrane protein change combined with co-existing TEM-1 and SHV-1 β-lactamases lead to false identification of ESBL-producing Klebsiella pneumoniae. J Antimicrob Chemother 2001; 47: 755761.
  • 24
    Domenech-Sanchez A, Martinez-Martinez L, Hernandez-Alles S et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 2003; 47: 33323335.
  • 25
    Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem 1995; 226: 235240.
  • 26
    George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistant phenotype in Escherichia coli. Microbiology 1995; 141: 19091920.
  • 27
    Hentschke M, Wolters M, Sobottka I, Rohde H, Aepfelbacher M. ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010; 54: 27202723.
  • 28
    Grobner S, Linke D, Schutz W et al. Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. J Med Microbiol 2009; 58: 912922.
  • 29
    Yang Y, Bhachech N, Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by β-lactamases. J Antimicrob Chemother 1995; 35: 7584.