• 1
    Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 2005; 295: 383404.
  • 2
    Pitout JD. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 2012; 2: Article 9 no.doi: 10.3389/fmicb.2012.00009.
  • 3
    Belanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol 2011; 62: 110.
  • 4
    Ewers C, Antao EM, Diehl I, Philipp HC, Wieler LH. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol 2009; 75: 184192.
  • 5
    Homeier T, Semmler T, Wieler LH, Ewers C. The GimA locus of extraintestinal pathogenic E. coli: does reductive evolution correlate with habitat and pathotype? PLoS ONE 2010; 5: e10877.
  • 6
    Ewers C, Grobbel M, Bethe A, Wieler LH, Guenther S. Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Berl Munch Tierarztl Wochenschr 2011; 124: 1017.
  • 7
    Smet A, Martel A, Persoons D et al. Broad-spectrum beta-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 2010; 34: 95316.
  • 8
    Wieler LH, Ewers C, Guenther S, Walther B, Lübke-Becker A. Methicillin-resistant staphylococci (MRS) and extended spectrum-beta lactamase (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 2011; 301: 635641.
  • 9
    Cantón R, Novais A, Valverde A et al. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008; 14: 144154.
  • 10
    Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159166.
  • 11
    Platell JL, Johnson JR, Cobbold RN, Trott DJ. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet Microbiol 2011; 153: 99108.
  • 12
    Carattoli A. Animal reservoirs for extended-spectrum β-lactamase producers. Clin Microbiol Infect 2008; 14: 117123.
  • 13
    Cavaco LM, Abatih E, Aarestrup FM, Guardabassi L. Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome. Antimicrob Agents Chemother 2008; 52: 36123616.
  • 14
    Damborg P, Marskar P, Baptiste KE, Guardabassi L. Faecal shedding of CTX-M-producing Escherichia coli in horses receiving broad-spectrum antimicrobial prophylaxis after hospital admission. Vet Microbiol 2012; 154: 298304.
  • 15
    EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum beta-lactamases in food and food-producing animals. EFSA J 2011; 9: 2322. doi: 10.2903/j.efsa.2011.2322. Available at: (last accessed 3 April 2012).
  • 16
    DANMAP. The Danish Integrated Antimicrobial resistance Monitoring and Research Program. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. 2010. ISSN: 1600–2032; Available at: (last accessed 3 April 2012).
  • 17
    Moreno A, Bello H, Guggiana D, Dominguez M, Gonzalez G. Extended-spectrum beta-lactamases belonging to CTX-M group produced by Escherichia coli strains isolated from companion animals treated with enrofloxacin. Vet Microbiol 2008; 129: 203208.
  • 18
    MARAN. Monitoring of antimicrobial resistance and antibiotic usage in animals in The Netherlands in 2009. 2009. Available at: (last accessed 3 April 2012 ).
  • 19
    Prescott JF. Antimicrobial use in food and companion animals. Anim Health Res Rev 2008; 9: 127133.
  • 20
    Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 2004; 54: 321332.
  • 21
    Weese SJ. Antimicrobial resistance in companion animals. Anim Health Res Rev 2008; 9: 169176.
  • 22
    Wassenaar TM, Silley P. Antimicrobial resistance in zoonotic bacteria: lessons learned from host-specific pathogens. Anim Health Res Rev 2008; 9: 177186.
  • 23
    Anonymous. Joint FAO/WHO/OIE expert meeting on critically important antimicrobials. Report of the FAO/WHO/OIE expert meeting. FAO, Rome, Italy 26.-30.11.2007.. 2007.
  • 24
    Overdevest I, Willemsen I, Rijnsburger M et al. Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 2011; 17: 12161222.
  • 25
    Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrob Chemother 2005; 56: 115121.
  • 26
    Teshager T, Dominguez L, Moreno MA, Saenz Y, Torres C, Cardenosa S. Isolation of an SHV-12 beta-lactamase-producing Escherichia coli strain from a dog with recurrent urinary tract infections. Antimicrob Agents Chemother 2000; 44: 34833484.
  • 27
    Briñas L, Moreno MA, Zarazaga M et al. Detection of CMY-2, CTX-M-14, and SHV-12 beta-lactamases in Escherichia coli fecal-sample isolates from healthy chickens. Antimicrob Agents Chemother 2003; 47: 20562058.
  • 28
    Kojima A, Ishii Y, Ishihara K et al. Extended-spectrum-beta-lactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002: report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. Antimicrob Agents Chemother 2005; 49: 35333537.
  • 29
    Duan RS, Sit TH, Wong SS et al. Escherichia coli producing CTX-M beta-lactamases in food animals in Hong Kong. Microb Drug Resist 2006; 12: 145148.
  • 30
    Sun Y, Zeng Z, Chen S et al. High prevalence of bla(CTX-M) extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect 2010; 16: 14751481.
  • 31
    Gibson JS, Cobbold RN, Trott DJ. Characterization of multidrug-resistant Escherichia coli isolated from extraintestinal clinical infections in animals. J Med Microbiol 2010; 59: 592598.
  • 32
    Ewers C, Bethe A, Wieler LH et al. Companion animals: a relevant source of extended-spectrum beta-lactamase-producing fluoroquinolone-resistant Citrobacter freundii. Int J Antimicrob Agents 2011; 37: 8687.
  • 33
    Smet A, Martel A, Persoons D et al. Characterization of extended-spectrum beta-lactamases produced by Escherichia coli isolated from hospitalized and nonhospitalized patients: emergence of CTX-M-15-producing strains causing urinary tract infections. Microb Drug Resist 2010; 16: 129134.
  • 34
    Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 2011; 17: 873880.
  • 35
    Wirth T, Falush D, Lan R et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60: 11361151.
  • 36
    Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61: 273281.
  • 37
    Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011; 66: 114.
  • 38
    Vincent C, Boerlin P, Daignault D et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 2010; 16: 8895.
  • 39
    Ewers C, Grobbel M, Stamm I et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 2010; 65: 651660.
  • 40
    Mora A, Herrera A, Mamani R et al. Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl Environ Microbiol 2010; 76: 69916997.
  • 41
    Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010; 51: 286294.
  • 42
    Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010; 8: 260271.
  • 43
    Croxall G, Hale J, Weston V et al. Molecular epidemiology of extraintestinal pathogenic Escherichia coli isolates from a regional cohort of elderly patients highlights the prevalence of ST131 strains with increased antimicrobial resistance in both community and hospital care settings. J Antimicrob Chemother 2011; 66: 25012508.
  • 44
    Johnson TJ, Wannemuehler Y, Johnson SJ et al. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 2008; 74: 70437050.
  • 45
    Ewers C, Li G, Wilking H et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 2007; 297: 163176.
  • 46
    Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35: 736755.