SEARCH

SEARCH BY CITATION

References

  • Bae, K. & Mallick, B. K. (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20, 34233430.
  • Berrington de González, A. & Cox, D. (2007) Interpretation of interaction: a review. Ann Appl Stat 1, 371385.
  • Bjørnvold, M., Undlien, D. E., Joner, G., Dahl-Jørgensen, K., Njølstad, P. R., Akselsen, H. E., Gervin, K., Rønningen, K. S. & Stene, L. C. (2008) Joint effects of HLA, INS, PTPN22 and CTLA4 genes on the risk of type 1 diabetes. Diabetologia 51, 589596.
  • Cantor, R. M., Lange, K. & Sinsheimer, J. S. (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86, 622.
  • Cordell, H. J. (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10, 392404.
  • Cordell, H. J. (2002) Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 11, 24632468.
  • Clayton, D. G. (2009) Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet 5, e1000540. doi:10.1371/journal.pgen.1000540.
  • Dunson, D. B., Herring, A. H. & Engle, S. M. (2008) Bayesian selection and clustering of polymorphisms in functionally related genes. J Am Stat Assoc 103, 534546.
  • Figueiredo, M. A. T. (2003) Adaptive sparseness for supervised learning. IEEE Trans Pattern Anal Mach Intell 25, 11501159.
  • Gelman, A. & Hill, J. (2007) Data analysis using regression and multilevel/hierarchical models. New York : Cambridge University Press.
  • Gelman, A., Carlin, J., Stern, H. & Rubin, D. (2003) Bayesian data analysis. London : Chapman and Hall.
  • Gelman, A., Jakulin, A., Pittau, M. G. & Su, Y. S. (2008) A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2, 13601383.
  • Griffin, J. E. & Brown, P. J. (2007) Bayesian adaptive lassos with non-convex penalization. Technical report, University of Warwick.
  • Huang, J., Lin, A., Narasimhan, B., Quertermous, T., Hsiung, C. A., Ho, L. T., Grove, J. S., Olivier, M., Ranade, K., Risch, N. J. & Olshen, R. A. (2004) Tree-structured supervised learning and the genetics of hypertension. Proc Natl Acad Sci U S A 101, 1052910534.
  • Hoggart, C. J., Whittaker, J. C., De lorio, M. & Balding, D. J. (2008) Simultaneously analysis of all SNPs in genome-wide and re-squencing association studies. PLoS Genet 4, e1000130.
  • Haley, C. S. & Knott, S. A. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.
  • Jakobsdottir, J., Gorin, M. B., Conley, Y. P., Ferrell, R. E. & Weeks, D. E. (2009) Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 5, e1000337. doi:10.1371/journal.pgen.1000337.
  • Kaklamani, V. G., Wisinski, K. B., Sadim, M., Gulden, C., Do, A., Offit, K., Baron, J. A., Ahsan, H., Mantzoros, C. & Pasche, B. (2008) Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA 300, 15231531.
  • Kiiveri, H. (2003) A Bayesian approach to variable selection when the number of variables is very large. In: Science and statistics: festschrift for Terry Speed (ed. D. R.Goldstein), Vol 40, pp. 127143. Institute of Mathematical Statistics Lecture Notes—Monograph Series
  • Kraft, P., Wacholder, S., Cornelis, M. C., Hu, F. B., Hayes, R. B., Thomas, G., Hoover, R., Hunter, D. J. & Chanock, S. (2009) OPINION Beyond odds—ratios communicating disease risk based on genetic profiles. Nat Rev Genet 10, 264269.
  • Kooperberg, C., LeBlanc, M., Dai, J. Y. & Rajapakse, I. (2009) Structures and assumptions: strategies to harness gene-gene and gene-environment interactions in GWAS. Stat Sci 24, 472488.
  • Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A. & Hemminki, K. (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343, 7885.
  • Lee, S. H., Van Der Werf, J. H., Hayes, B. J., Goddard, M. E. & Visscher, P. M. (2008) Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet 4, e1000231.
  • Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F. C., McCarroll, S. A. & Visscher, P. M. (2009) Finding the missing heritability of complex diseases. Nature 461, 747753.
  • Malo, N, Libiger, O. & Schork, N. J. (2008) Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. Am J Hum Genet 82, 375385.
  • McCullagh, P. & Nelder, J. A. (1989) Generalized linear models, second edition. London : Chapman and Hall.
  • Moore, J. H. & Williams, S. M. (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85, 309320.
  • Park, M.Y. & Hastie, T. (2008) Penalized logistic regression for detecting gene interactions. Biostatistics 9, 3050.
  • Park, T. & Casella, G. (2008) The Bayesian Lasso. J Am Stat Assoc 103, 681686.
  • Ritchie, M., Hahn, L., Roodi, N., Bailey, L., Dupont, W., Parl, F. & Moore, J. (2001) Multifactor dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69, 138147.
  • Sun, W., Ibrahim, J. G. & Zou, F. (2010) Genome-wide multiple loci mapping in experimental crosses by the iterative adaptive penalized regression. Genetics 185, 349359.
  • Thomas, D. C., Conti, D. V., Baurley, J., Nijhout, F., Reed, M. & Ulrich, C. M. (2009) Use of pathway information in molecular epidemiology. Hum Genomics 4, 2142.
  • Tanck, M. W. T., Jukema, J. W. & Zwinderman, A. H. (2006) Simultaneous estimation of gene-gene and gene-environment interactions for numerous loci using double penalized log-likelihood. Genet Epidemiol 30, 645651.
  • Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. R. Statist. Soc. B. 58, 267288.
  • Valle, L., Serena-Acedo, T., Liyanarachchi, S., Hampel, H., Comeras, I., Li, Z., Zeng, Q., Zhang, H.T., Pennison, M., Sadim, M., Pasche, B., Tanner, S. & de la Chapelle, A. (2008) Germline allele-specific expression of TGFBR1 predisposes to colorectal cancer. Science 321, 13611365.
  • Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. & Lange, K. (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25, 714721.
  • Wray, N. R., & Goddard, M. E. (2010) Multi-locus models of genetic risk of disease. Genome Med 2, 10. doi:10.1186/gm131.
  • Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. (2010) The genetic interpretation of area under the ROC curve in genomic profiling. PLOS Genet 6, e1000864.
  • Wei, Z., Wang, K., Qu, H.-Q., Zhang, H., Bradfield, J., Kim, C., Frackleton, E., Hou, C., Glessner, J. T., Chiavacci, R., Stanley, C., Monos, D., Grant, S. F. A., Polychronakos, C. & Hakonarson, H. (2009) From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genet 5, e1000678. doi:10.1371/journal.pgen.1000678.
  • Xu, S. (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63, 513521.
  • Xu, Y. & Pasche, B. (2007) TGF-β signaling alterations and susceptibility to colorectal cancer. Human Mol Genet 16, R14-R20.
  • Yandell, B. S., Mehta, T., Banerjee, S., Shriner, D., Venkataraman, R., Moon, J. Y., Neely, W. W., Wu, H., von Smith, R. & Yi, N. (2007) R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics 23, 641634.
  • Yi, N. & Banerjee, S. (2009) Hierarchical generalized linear models for multiple quantitative trait locus mapping. Genetics 181, 11011113.
  • Yi, N. & Xu, S. (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179, 10451055.
  • Yi, N., Yandell, B. S., Churchill, G. A., Allison, D. B., Eisen, E. J. & Pomp, D. (2005) Bayesian model selection for genome-wide epistatic QTL analysis. Genetics 170, 13331344.
  • Zeng, Z-B., Wang, T. & Zou, W. (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169, 17111725.