SEARCH

SEARCH BY CITATION

References

  • Andrew, A. S., Nelson, H. N., Kelsey, K. T., Moore, J. H., Meng, A., Casella, D. P., Tosterson, T. D., Schned, A. R. & Karagas, M. R. (2006) Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking, and bladder cancer susceptibility. Carcinogenesis 27, 10301037.
  • Bush, W. S., Dudek, S. M. & Ritchie, M. D. (2006) Parallel multifactor dimensionality reduction: A tool for the large-scale analysis of gene-gene interactions. Bioinformatics 22, 21732174.
  • Bush, W. S., Edwards, T. L., Dudek, S. M., McKinney, B. A. & Ritchie, M. D. (2008) Alternative contingency table measures improve the power and detection of multifactor dimensionality reduction. BMC Bioinformatics 9, 238.
  • Calle, M. L., Urrea, V., Malats, N. & van Steen, K. (2008) MB-MDR: Model-based multifactor dimensionality reduction for detecting interactions in high-dimensional genomic data. Technical report .
  • Chung, Y., Lee, S. Y., Elston, R. C. & Park, T. (2007) Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions. Bioinformatics 23, 7176.
  • Cordell, H. J. (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10, 392404.
  • Greene, C. S., Himmelstein, D. S., Kelsey, K. T., Williams, S. M., Andrew, A. S., Karagas, M. R. & Moore, J. H. (2010) Enabling personal genomics with an explicit test of epistasis. Pacific Symposium on Biocomputing, 327336.
  • Hahn, L. W., Ritchie, M. D. & Moore, J. H. (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376382.
  • Hahn, L. W. & Moore, J. H. (2004) Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol 4, 183194.
  • Lee, S. Y. Chung, Y., Elston, R. C., Kim, Y. & Park, T. (2007) Log-linear model-based multifactor dimensionality reduction method to detect gene-gene interactions. Bioinformatics 23, 25892595.
  • Li, W. & Reich, J. (2000) A complete enumeration and classification of two-locus disease models. Hum Hered 50, 334349.
  • Lou, X. Y., Chen, G. B., Yan, L., Ma, J. Z., Zhu, J., Elston, R. C. & Li, M. D. (2007) A generalized combinatorial approach for detecting gene by gene and gene by environment interactions with application to nicotine dependence. Am J Hum Genet 80, 11251137.
  • Mei, H., Cuccaro, M. L. & Martin, E. R. (2007) Multifactor dimensionality reduction-phenomics: A novel method to capture genetic heterogeneity with use of phenotypic variables. Am J Hum Genet 81, 12511261.
  • Michalski, R.S. (1983) A theory and methodology of inductive learning. Artif Intel 20, 111161.
  • Moore, J. H. (2004) Computational analysis of gene-gene interactions in common human diseases using multifactor dimensionality reduction. Expert Rev Mol Diagn 4, 795803.
  • Moore, J. H., Gilbert, J. C., Tsai, C.T., Chiang, F. T., Holden, W., Barney, N. & White, B. C. (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241, 252261.
  • Moore, J. H. (2007) Genome-wide analysis of epistasis using multifactor dimensionality reduction: Feature selection and construction in the domain of human genetics. In: Knowledge discovery and data mining: Challenges and realities with real world data (eds. X.Zhu & I.Davidson), pp. 1730. Hershey : IGI Press.
  • Moore, J. H. & Williams, S. M. (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85, 309320.
  • Moore, J. H., Asselbergs, F. W. & Williams, S. M. (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26, 445455.
  • Motsinger-Reif, A. A., Reif, D. M., Fanelli, T. J. & Ritchie, M. D. (2008) A comparison of analytical methods for genetic association studies. Genet Epidemiol 32, 767778.
  • Namkung, J., Kim, K., Yi, S., Chung, W., Kwon, M. & Park, T. (2009) New evaluation measures for multifactor dimensionality reduction classifiers in gene-gene interaction analysis. Bioinformatics 25, 338345.
  • Pattin, K. A., White, B. C., Barney, N., Gui, J., Nelson, H. H., Kelsey, K. R., Andrew, A. S., Karagas, M. R. & Moore, J. H. (2009) A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 33, 8794.
  • Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., Moore, J. H. (2001) Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am J Hum Genet 69, 138147.
  • Ritchie, M. D., Hahn, L. W. & Moore, J. H. (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24, 150157.
  • Sinnott-Armstrong, N. A., Greene C. S., Cancare, F. & Moore, J. H. (2009) Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Res Notes 2, 149.
  • Velez, D. R., White, B. C., Motsinger, A. A., Bush, W. S., Ritchie, M. D., Williams, S. M. & Moore, J. H. (2007) A balanced accuracy metric for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31, 306315.