The role of chemical communication in mate choice


* Björn G. Johansson, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE - 752 36 Uppsala, Sweden. Tel: +46-18-4716495. Fax: +46-18-4716484. E-mail:


Chemical signals are omnipresent in sexual communication in the vast majority of living organisms. The traditional paradigm was that their main purpose in sexual behaviour was to coordinate mate and species recognition and thus pheromones were conserved in structure and function. In recent years, this view has been challenged by theoretical analyses on the evolution of pheromones and empirical reports of mate choice based on chemical signals. The ability to measure precisely the quantity and quality of chemicals emitted by single individuals has also revealed considerable individual variation in chemical composition and release rates, and there is mounting evidence that prospecting mates respond to this variation. Here, we review the evidence for pheromones as indicators of mate quality and examine the extent of their use in individual mate assessment. We begin by briefly defining the levels of mate choice – species recognition, mate recognition and mate assessment. We then explore the degree to which pheromones satisfy the key criteria necessary for their evolution and maintenance as cues in mate assessment; that is, they should exhibit variation across individuals within a sex and species; they should honestly reflect an individual’s quality and thus be costly to produce and/or maintain; they should display relatively high levels of heritability. There is now substantial empirical evidence that pheromones can satisfy all these criteria and, while measurements of the actual metabolic cost of pheromone production remain to some degree lacking, trade-offs between pheromone production and various fitness-related characters such as growth rate, immunocompetence and longevity have been reported for a range of species. In the penultimate section, we outline the growing number of studies where the consequences of chemical-based mate assessment have been investigated, specifically focussing on the reported direct and genetic benefits accrued by the receiver. Finally, we highlight potential areas for future research and in particular emphasise the need for interdisciplinary research that combines exploration of chemical, physiological and behavioural processes to further our understanding of the role of chemical cues in mate assessment.