SEARCH

SEARCH BY CITATION

References

  • Ameredes, B. T. & Provenzano, M. A. (1999). Influence of nitric oxide on vascular resistance and muscle mechanics during tetanic contractions in situ. Journal of Applied Physiology 87, 142151.
  • Armstrong, R. B. & Laughlin, M. H. (1983). Blood flows within and among rat muscles as a function of time during high speed treadmill exercise. Journal of Physiology 344, 189208.
  • Armstrong, R. B. & Laughlin, M. H. (1985). Metabolic indicators of fibre recruitment in mammalian muscles during locomotion. Journal of Experimental Biology 115, 201213.
  • Armstrong, R. B. & Phelps, R. O. (1984). Muscle fibre type composition of the rat hindlimb. American Journal of Anatomy 171, 259272.
  • Armstrong, R. B., Saubert, C. W. IV, Sembrowich, W. L., Shepherd, R. E. & Gollnick, P. D. (1974). Glycogen depletion in rat skeletal muscle fibres at different intensities and durations of exercise. Pflügers Archiv 352, 243256.
  • Balon, T. W. (1999). Integrative biology of nitric oxide and exercise. Exercise and Sport Sciences Reviews 27, 219251.
  • Bellan, J. A., McNamara, D. B. & Kadowitz, P. J. (1993). Differential effects of nitric oxide synthesis inhibitors on vascular resistance and responses to acetylcholine in cats. American Journal of Physiology 264, H4552.
  • Brock, R. W., Tschakovsky, M. E., Shoemaker, J. K., Halliwill, J. R., Joyner, M. J. & Hughson, R. L. (1998). Effects of acetylcholine and nitric oxide on forearm blood flow at rest and after a single muscle contraction. Journal of Applied Physiology 85, 22492254.
  • Buckwalter, J. B. & Clifford, P. S. (1999). α-Adrenergic vasoconstriction in active skeletal muscles during dynamic exercise. American Journal Physiology 277, H3339.
  • Delp, M. D., Colleran, P. N., Wilkerson, M. K., McCurdy, M. R. & Muller-Delp, J. (2000). Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity. American Journal of Physiology — Heart and Circulatory Physiology 278, H18661873.
  • Delp, M. D. & Laughlin, M. H. (1998). Regulation of skeletal muscle perfusion during exercise. Acta Physiologica Scandinavica 162, 411419.
  • Duffy, S. J., New, G., Tran, B. T., Harper, R. W. & Meredith, I. T. (1999). Relative contribution of vasodilator prostanoids and NO to metabolic vasodilation in the human forearm. American Journal of Physiology 276, H663670.
  • Dyke, C. K., Proctor, D. N., Dietz, N. M. & Joyner, M. J. (1995). Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans. Journal of Physiology 488, 259265.
  • Ekelund, U., Bjönber, J., Gände, P.-O., Albert, U. & Mellander, S. (1992). Myogenic vascular regulation in skeletal muscle in vivo is not dependent on endothelium-derived nitric oxide. Acta Physiologica Scandinavica 144, 199207.
  • Ekelund, U. & Mellander, S. (1990). Role of endothelium-derived nitric oxide in the regulation of tonus in large bore arterial resistance vessels, arterioles and veins in cat skeletal muscle. Acta Physiologica Scandinavica 140, 301309.
  • Endo, T., Imaizumi, T., Tagawa, T., Shiramoto, M., Ando, S. & Takeshita, A. (1994). Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation 90, 28862890.
  • Flaim, S. F., Nellis, S. H., Toggart, E. J., Drexler, H., Kanda, K. & Newman, E. D. (1984). Multiple simultaneous determinations of hemodynamics and flow distribution in conscious rat. Journal of Pharmacological Methods 11, 139.
  • Gardiner, S. M., Compton, A. M., Kemp, P. A. & Bennett, T. (1990). Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long-Evans rats. British Journal of Pharmacology 101, 625631.
  • Gilligan, D. M., Panza, J. A., Crescence, M. K., Waclawiw, M. A., Casino, P. R. & Quyyumi, A. A. (1994). Contribution of endothelium-derived nitric oxide to exercise induced vasodilation. Circulation 90, 28532858.
  • Green, D. J., O'Driscoll, G., Blanksby, B. A. & Taylor, R. R. (1996). Control of skeletal muscle blood flow during dynamic exercise. Contribution of endothelium-derived nitric oxide. Sports Medicine 21, 119146.
  • Hester, R. L., Eraskan, A. & Saito, Y. (1993). Differences in EDNO contribution to arteriolar diameters at rest and during functional dilation in striated muscle. American Journal of Physiology 265, H146151.
  • Hickner, R. C., Fisher, J. S., Ehsani, A. A. & Kohrt, W. M. (1997). Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans. American Journal of Physiology 273, H405410.
  • Hirai, T., Visneski, M. D., Kearns, K. J., Zelis, R. & Musch, T. I. (1994). Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats. Journal of Applied Physiology 77, 12881293.
  • Hussain, S. N. A., Stewart, D. J., Ludemann, J. P. & Magder, S. (1992). Role of endothelium-derived factor in active hyperemia of the canine diaphragm. Journal of Applied Physiology 72, 23932401.
  • Joyner, M. J. & Dietz, N. M. (1997). Nitric oxide and vasodilation in human limbs. Journal of Applied Physiology 83, 17851796.
  • Kindig, C. A., Gallatin, L. L., Erickson, H. H., Fedde, M. R. & Poole, D. C. (2000). Cardiorespiratory impact of the nitric oxide synthase inhibitor L-NAME in the exercising horse. Respiration Physiology 120, 151166.
  • Koller, A. & Kaley, G. (1990). Prostaglandins mediate arteriolar dilation to increase blood flow velocity in skeletal muscle microcirculation. Circulation Research 67, 529534.
  • Laughlin, M. H. & Armstrong, R. B. (1982). Muscular blood flow distribution patterns as a function of running speed in rats. American Journal of Physiology 243, H296306.
  • Laughlin, M. H., Korthuis, R. J., Duncker, D. J. & Bache, R. J. (1996). Control of blood flow to cardiac and skeletal muscle during exercise. In Handbook of Physiology, section 12, Exercise: Regulation and Integration of Multiple Systems, ed. Rowell, L. B. & Shepherd, J. T., pp. 705769. American Physiological Society, Bethesda .
  • Lautt, W. W. (1989). Resistance or conductance for expression of arterial vascular tone. Microvascular Research 37, 230236.
  • Loeb, A. L. & Longnecker, D. E. (1992). Inhibition of endothelium-derived relaxing factor-dependent circulatory control in intact rats. American Journal of Physiology 262, H14941500.
  • McCurdy, M. R., Colleran, P. N., Muller-Delp, J. & Delp, M. D. (2000). Selected Contribution: Effects of fibre composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles. Journal of Applied Physiology 89, 398405.
  • Musch, T. I., Bruno, A., Bradford, G. E., Vayonis, A. & Moore, R. L. (1988). Measurement of metabolic rate in rats: a comparison of techniques. Journal of Applied Physiology 65, 964970.
  • Musch, T. I. & Terrell, J. A. (1992). Skeletal muscle blood flow abnormalities in rats with a chronic myocardial infarction: rest and exercise. American Journal of Physiology 262, H411419.
  • Musch, T. I., Terrell, J. A. & Hilty, M. R. (1991). Effects of high-intensity sprint training on skeletal muscle blood flow in rats. Journal of Applied Physiology 71, 13871395.
  • O'Leary, D. S., Dunlap, R. C. & Glover, K. W. (1994). Role of endothelium-derived relaxing factor in hindlimb reactive and active hyperaemia in conscious dogs. American Journal of Physiology 266, R12131219.
  • Rådegran, G. & Hellsten, Y. (2000). Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilation. Acta Physiologica Scandinavica 168, 575591.
  • Rådegran, G. & Saltin, B. (1999). Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. American Journal of Physiology 276, H19511960.
  • Sagach, V. F., Kindybalyuk, A. M. & Kovalenko, T. N. (1992). Functional hyperaaemia of skeletal muscle: Role of endothelium. Journal of Cardiovascular Pharmacology 20 (suppl.), S170175.
  • Shen, W., Lundborg, M., Wang, J., Stewart, J. M., Xu, X., Ochoa, M. & Hintze, T. H. (1994). Role of EDRF in the regulation of regional blood flow and vascular resistance at rest and during exercise in conscious dogs. Journal of Applied Physiology 77, 165172.
  • Sheriff, D. D., Nelson, C. D. & Sundermann, R. K. (2000). Does autonomic blockade reveal a potent contribution of nitric oxide to locomotion-induced vasodilation. American Journal of Physiology — Heart and Circulatory Physiology 279, H726732.
  • Shoemaker, J. K., Halliwill, J. R., Hughson, R. L. & Joyner, M. J. (1997). Contributions of acetycholine and nitric oxide to forearm blood flow at exercise onset and recovery. American Journal of Physiology 273, H23882395.
  • Symons, J. D., Musch, T. I., Hageman, K. S. & Stebbins, C. L. (1999a). Regional blood flow responses to acute Ang II infusion: Effects of nitric oxide synthase inhibition. Journal of Cardiovascular Pharmacology 34, 116123.
  • Symons, J. D., Stebbins, C. L. & Musch, T. I. (1999b). Interactions between angiotensin II and nitric oxide during exercise in normal and heart failure rats. Journal of Applied Physiology 87, 574581.
  • Thomas, G. D., Hansen, J. & Victor, R. G. (1994). Inhibition of α2-adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. American Journal of Physiology 266, H920929.
  • Thomas, G. D. & Victor, R. G. (1997). Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. Journal of Physiology 506, 817826.
  • Wilson, J. R. & Kapoor, S. (1993). Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans. Journal of Applied Physiology 75, 27402744.