SEARCH

SEARCH BY CITATION

References

  • Antoine D, Dean C, Hillson S (1999) The periodicity of incremental structures in dental enamel based on the developing dentition of post-medieval known-age children. In Dental Morphology ’98: Proceedings of the 11th International Symposium on Dental Morphology (eds MayhallJT, HeikkinenT), pp. 4855. Oulu: Oulu University Press.
  • Antoine D (2000) Evaluating the periodicity of incremental structures in dental enamel as a means of studying growth in children from past human populations. PhD dissertation, University College London.
  • Beynon AD (1992) Circaseptan rhythms in enamel development in modern humans and Plio-Pleistocene hominids. In Structure, Function and Evolution of Teeth (eds SmithP, TchernovE), pp. 295309. London: Freund.
  • Boyde A (1989) Enamel. In Handbook of Microscopic Anatomy, Vol. V/6: Teeth (eds OkscheA, VollrathL), pp. 309473. Berlin: Springer.
  • Bromage TG (1991) Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissues. Am J Phys Anthropol 86, 205214.
  • Dean MC (1993) Daily rates of dentine formation in macaque tooth roots. Int J Osteoarch 3, 199206.
  • Dean MC, Beynon AD, Reid DJ, Whittaker DK (1993) A longitudinal study of tooth growth in a single individual based on long- and short-period incremental markings in dentine and enamel. Int J Osteoarch 3, 249264.
  • Dean MC, Scandrett AE (1995) Rates of dentine mineralization in permanent human teeth. Int J Osteoarch 5, 349358.
  • Dean MC, Scandrett AE (1996) The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Arch Oral Biol 41, 233241.
  • Dean MC (2000) Progress in understanding hominoid dental development. J Anat 197, 77101.
  • FitzGerald CM (1996) Tooth crown formation and the variation of enamel microstructural growth markers in modern humans. PhD dissertation, University of Cambridge.
  • FitzGerald CM (1998) Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. J Hum Evol 35, 371386.
  • Gustafson A-G (1959) A morphologic investigation of certain variations in the structure and mineralization of human dental enamel. Odontol Tidskr 67, 366472.
  • Hastings MH (1997) The vertebrate clock: localisation, connection, and entrainment. In Physiology and Pharmacology of Biological Rhythms (eds RedfernPH, LemmerB), pp. 128. Berlin: Springer.
  • Haus E, Touitou Y (1997) Chronobiology and development of aging. In Physiology and Pharmacology of Biological Rhythms (eds RedfernPH, LemmerB), pp. 95134. Berlin: Springer.
  • Jin X, Shearman LP, Weaver DR, Zylka MJ, De Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 5768.
  • Kawasaki K, Tanaka S, Ishikawa T (1977) On the incremental lines in human dentine as revealed by tetracycline labelling. J Anat 123, 427436.
  • Li C, Risnes S (2004) SEM observations of Retzius lines and prism cross-striations in human dental enamel after different acid etching regimes. Arch Oral Biol 49, 4552.
  • Miani A, Miani C (1971) Circadian advancement rhythm of the calcification front in dog dentin. Minerva Stomatol 20, 169178.
  • Mimura F (1939) The periodicity of growth lines seen in enamel. Kobyo-Shi 13, 454455 (in Japanese)..
  • Molnar S, Przybeck TR, Gantt DG, Elizondo RS, Wilkerson JE (1981) Dentin apposition rates as markers of primate growth. Am J Phys Anthropol 55, 443453.
  • Newell-Morris L, Sirianni JE (1982) Parameters of bone growth in the fetal and infant macaque (Macaca nemestrina) humerus as documented by trichromatic bone labels. In Factors and Mechanisms Influencing Bone Growth, pp. 243258. New York: Alan R. Liss.
  • Newman HN, Poole DFG (1974) Observations with scanning and transmission electron microscopy on the structure of human surface enamel. Arch Oral Biol 19, 11351143.
  • Newman HN, Poole DFG (1993) Dental enamel growth. J R Soc Med 86, 61.
  • Ohtsuka M, Shinoda H (1995) Ontogeny of circadian dentinogenesis in the rat incisor. Arch Oral Biol 40, 481485.
  • Ohtsuka-Isoya M, Hayashi H, Shinoda H (2001) Effect of suprachiasmatic nucleus lesion on circadian dentin increment in rats. Am J Physiol Reg Comp Physiol 280, R1364R1370.
  • Okada M (1943) Hard tissues of animal body: highly interesting details of Nippon studies in periodic patterns of hard tissues are described. In The Shanghai Evening Post Special Edition, Health, Recreation and Medical Progress, pp. 1531.
  • Reid DJ, Schwartz GT, Dean C, Chandrasekera MS (1998a) A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. J Hum Evol 35, 427448.
  • Reid DJ, Beynon AD, Ramirez Rozzi FV (1998b) Histological reconstruction of dental development in four individuals from a medieval site in Picardie, France. J Hum Evol 35, 463477.
  • Reid D, Ferrell R, Walton P (2002) Histologically derived canine crown formation times from a medieval Danish sample. Am J Phys Anthropol Suppl. 34, 129.
  • Reppert SM (1995) Interaction between the circadian clocks of mother and fetus. In Circadian Clocks and Their Adjustment (eds ChadwickDJ, AckrillK), pp. 198211. Chichester: John Wiley & Sons.
  • Risnes S (1990) Structural characteristics of staircase-type Retzius lines in human dental enamel analyzed by scanning electron microscopy. Anat Rec 226, 135146.
  • Risnes S (1998) Growth tracks in dental enamel. J Hum Evol 35, 331350.
  • Roenneberg T, Morse D (1993) Two circadian oscillators in one cell. Nature 362, 362364.
  • Roenneberg T, Merrow M (2001) Circadian systems: different levels of complexity. Phil Trans R Soc Lond 356, 16871696.
  • Rosenberg GD, Simmons DJ (1980) Rhythmic dentinogenesis in the rabbit incisor: circadian, ultradian, and infradian periods. Calcif Tissue Int 32, 2944.
  • Schour I, Hoffman MM (1939) Studies in tooth development. II. The rate of apposition of enamel and dentin in man and other mammals. J Dent Res 18, 161175.
  • Scrutton CT (1978) Periodic growth features in fossil organisms and the length of the day and month. In Tidal Friction and the Earth's Rotation (eds BrocheP, SundermannJ), pp. 154196. Berlin: Springer-Verlag.
  • Shinoda H (1984) Biological rhythms recorded in teeth. Chem Today 9, 3440.
  • Sirianni JE (1985) Nonhuman primates as models for human craniofacial growth. In Nonhuman Primate Models for Human Growth and Development (ed. WattsE), pp. 95124. New York: Alan R. Liss, Inc.
  • Smith TM, Martin LB, Leakey MG (2003) Enamel thickness, microstructure and development in Afropithecus turkanensis. J Hum Evol 44, 283306.
  • Smith TM (2004) Incremental development of primate dental enamel. PhD dissertation, Stony Brook University (available online at: http://www.paleoanthro.org/dissertation_list.htm).
  • Smith TM, Martin LB, Reid DJ, de Bouis L, Koufos GD (2004) An examination of dental development in Graecopithecus freybergi (=Ouranopithecus macedoniensis). J Hum Evol 46, 551577.
  • Smith TM, Reid DJ, Sirianni JE (2006) The accuracy of histological assessments of dental development and age at death. J Anat 208, 125138.
  • Tafforeau P (2004) Aspects Phylogénétiques et Fonctionnels de la Microstructure de l’Email Dentaire et de la Structure Tridimensionnelle des Molaires Chez les Primates Fossiles et Actuels: Apports de la Microtomographie à Rayonnement X Synchrotron. PhD dissertation, Université de Montpellier II.
  • Vollrath L, Kantarjian A, Howe C (1975) Mammalian pineal gland: 7-day rhythmic activity? Experientia 31, 458460.
  • Whittaker DK (1982) Structural variations in the surface zone of human tooth enamel observed by scanning electron microscopy. Arch Oral Biol 27, 383392.
  • Yamazaki S, Numano R, Abe M, et al. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682685.