• antimeric variation;
  • Australopithecus africanus;
  • enamel–dentine junction;
  • Homo sapiens;
  • metameric variation;
  • molars;
  • Pan paniscus;
  • Pan troglodytes;
  • premolars


We used micro-computed tomography and virtual tools to study metric and morphological features at the enamel–dentine junction and on the outer enamel surface in the postcanine dentition of an exceptionally well-preserved maxilla and mandible of an early hominin. The fossil, Sts 52 from Sterkfontein, South Africa, is attributed to Australopithecus africanus and is about 2.5 million years old. For comparative purposes in this exploratory study, we also used micro-computed tomography to analyse the dentition of a common chimpanzee (Pan troglodytes), a pygmy chimpanzee (Pan paniscus) and three extant humans. Metameric variation of the 3D enamel–dentine junction in the two chimpanzee mandibles was much smaller than in extant humans. Variation in metameric shape was high and complex. Notably, the mandibular metameric variation in extant humans can be greater within individuals, as compared with variation between individuals, with differences in shape appearing greater for M2 compared with M1. We recommend the use of a new approach in which individual metameric variation is systematically assessed before making inferences about differences between fossil hominin species. The fossil hominin examined in this study showed a metameric pattern of mandibular variation in shape that was comparable to the pattern seen in two chimpanzees. This degree of metameric variation appeared relatively small compared with the much larger patterns of variation observed within and between extant humans.