• alkaline phosphatase;
  • Eulamprus quoyii;
  • placenta;
  • vasculature;
  • viviparity


The eastern water skink (Eulamprus quoyii) has lecithotrophic embryos and was previously described as having a simple Type I chorioallantoic placenta. Indeed, it was the species upon which the definition of a Type I placenta was thought to be based, although we had cause to question that assumption. Hence we have described the morphology of the uterus of E. quoyii and found it to be more complex than previously supposed. The mesometrial pole of the uterus in E. quoyii displays a vessel-dense elliptical structure (the VDE) with columnar uterine epithelial cells. As pregnancy proceeds, the uterine epithelium near the mesometrial pole becomes folded and glands become hypertrophied, so that the morphology of VDE resembles that of a placentome, characteristic of Type III placentae. Unlike species with a Type III placenta, the apposing chorioallantoic membrane of E. quoyii is lined with squamous cells and interdigitates with the folded uterine epithelium. The remainder of the uterus is thin with a squamous uterine epithelium throughout pregnancy. Immunohistochemical localisation of blood vessels reveals a dense network of small capillaries directly beneath the folded epithelium of the VDE, while blood vessels are larger and sparser at the abembryonic pole of the uterus. Alkaline phosphatase (AP) activity is present in the uterine epithelium and sub-epithelial blood vessels in newly ovulated females. AP activity disappears from the epithelium between stages 27 and 29 of embryonic development and from the blood vessels after stage 34, but appears in the uterine glands at stage 35, where it remains until the end of pregnancy. Although the VDE is structurally similar to the placentomes found in other viviparous lizards, different distributions of AP activity in the uterus of E. quoyii and Pseudemoia spenceri suggest that the VDE may be functionally different from the placentome of the latter species. Our description of uterine morphology in E. quoyii provides evidence that, at least in some lineages, the evolution of a placentome may not occur in concert with the evolution of microlecithal eggs and obligate placentotrophy.