SEARCH

SEARCH BY CITATION

Keywords:

  • Fragile X syndrome;
  • cognitive function;
  • brain imaging

Background:  Fragile X syndrome is one of the world's leading hereditary causes of developmental delay in males. The past decade has witnessed an explosion of research that has begun to unravel the condition at its various levels: from the genetic and brain levels to the cognitive level, and then to the environmental and behavioural levels. Our aim in this review is to attempt to integrate some of the extensive body of knowledge to move the research a step closer to understanding how the dynamics of atypical development can influence the specific cognitive and behavioural end-states frequently observed in children and adolescents with fragile X syndrome.

Methods:  We conducted a review of the current neuropsychological and neuropsychiatric approaches that have attempted to delineate the pattern of ‘spared’ and ‘impaired’ functions associated with the phenotype.

Results:  The profile of findings suggests that fragile X syndrome should not be viewed merely as a catalogue of spared and impaired cognitive functions or modules. Instead, there appears to be a process of almost gradual modularisation whereby cognitive mechanisms become domain specific as a function of development itself (Karmiloff-Smith, 1992). The results of a decade of intense research point towards an early weakness in one or more components of executive control rather than single, static higher-level deficits (e.g., spatial cognition, speech processing). This weakness affects both the development of more complex functions and current performance.

Conclusions:  The prevailing tendency to interpret developmental disorders in terms of fixed damage to distinct modular functions needs to be reconsidered. We offer this review as an example of an alternative approach, attempting to identify an initial deficit and its consequences for the course of development. Through better definition of the cognitive and behavioural phenotype, in combination with current progress in brain imaging techniques and molecular studies, the next decade should continue to hold exciting promise for fragile X syndrome and other neurodevelopmental disorders.