SEARCH

SEARCH BY CITATION

  • Akoev, G. N., Filippova, L. V. & Sherman, N. O. (1996). Mast cell mediators excite the afferents of cat small intestine. Neuroscience 71, 11631166.DOI: 10.1016/0306-4522(95)00479-3
  • Anthony, T. L. & Kreulen, D. L. (1990). Volume-sensitive synaptic input to neurons in guinea pig inferior mesenteric ganglion. American Journal of Physiology 259, G490497.
  • Berthoud, H. R., Kressel, M., Raybould, H. E. & Neuhuber, W. L. (1995). Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiL-tracing. Anatomy and Embryology 191, 203212.
  • Berthoud, H. R. & Patterson, L. M. (1996). Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Acta Anatomica 156, 123131.
  • Bertrand, P. P., Kunze, W. A., Bornstein, J. C., Furness, J. B. & Smith, M. L. (1997). Analysis of the response of myenteric neurons in the small intestine to chemical stimulation of the mucosa. American Journal of Physiology 273, G422435.
  • Blackshaw, L. A. & Grundy, D. (1993). Effect of 5-HT on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. Journal of the Autonomic Nervous System 45, 4150.
  • Bülbring, E. & Lin, R. C. Y. (1958). L0he effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. The Journal of Physiology 140, 381407.
  • Cervero, F. & Sharkey, K. A. (1988). An electrophysiological and anatomical study of intestinal afferent fibres in the rat. The Journal of Physiology 401, 381397.
  • Clark, G. D. & Davison, J. S. (1978). Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. The Journal of Physiology 274, 5567.
  • Cottrell, D. F. & Iggo, A. (1984). Mucosal enteroceptors with vagal afferent fibres in the proximal duodenum of sheep. The Journal of Physiology 354, 497522.
  • Davison, J. S. (1972). Response of single vagal afferent fibres to mechanical and chemical stimulation of the gastric and duodenal mucosa in cats. Quarterly Journal of Experimental Physiology 57, 405416.
  • El Ouazzani, T. & Mei, N. (1981). Vagal acido- and glucoreceptors in the gastro-duodenal region. Experimental Brain Research 42, 442452.
  • Gershon, M. D. (1991). Serotonin: its role and receptors in enteric neurotransmission. Advances in Experimental Medicine and Biology 294, 221230.
  • Gershon, M. D., Kirchgessner, A. L. & Wade, P. R. (1994). Functional anatomy of the enteric nervous system. In Physiology of the Gastrointestinal Tract, 3rd edn, vol. 1, ed. Johnson, L. R., pp. 381422. Raven Press, New York .
  • Gibbins, I. L., Furness, J. B., Costa, M., Macintyre, I., Hillyard, C. J. & Girgis, S. (1985). Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neuroscience Letters 572, 125130.DOI: 10.1016/0304-3940(85)90050-3
  • Grider, J. R. & Jin, J. G. (1994). Distinct populations of sensory neurons mediate the peristaltic reflex elicited by muscle stretch and mucosal stimulation. Journal of Neuroscience 14, 28542860.
  • Grider, J. R., Kuemmerle, J. F. & Jin, J. G. (1996). 5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons. American Journal of Physiology 270, G7787782.
  • Grundy, D. (1988). Speculations on the structure/function relationship for vagal and splanchnic afferent endings supplying the gastrointestinal tract. Journal of the Autonomic Nervous System 22, 175180.DOI: 10.1016/0165-1838(88)90104-X
  • Hardcastle, J., Hardcastle, P. T., Carstairs, J. W. & Franks, C. M. (1994). Is desensitization of intestinal 5-hydroxytryptamine receptors an in-vitro phenomenon? Journal of Pharmacy and Pharmacology 46, 322325.
  • Hillsley, K., Kirkup, A. J. & Grundy, D. (1998). Direct and indirect actions of 5-hydroxytryptamine on the discharge of mesenteric afferent fibres innervating the rat jejunum. The Journal of Physiology 506, 551561.
  • Iggo, A. (1957). Gastric mucosal receptors with afferent fibres in the cat. Quarterly Journal of Experimental Physiology 42, 398409.
  • Kirchgessner, A. L., Liu, M. T. & Gershon, M. D. (1996). In situ identification and visualization of neurons that mediate enteric and enteropancreatic reflexes. Journal of Comparative Neurology 371, 270286.DOI: 10.1002/(SICI)1096-9861(19960722)371:2<270::AID-CNE7>3.3.CO;2-R
  • Kirchgessner, A. L., Tamir, H. & Gershon, M. D. (1992). Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. Journal of Neuroscience 12, 235248.
  • Lew, W. Y. W. & Longhurst, J. C. (1986). Substance P, 5-hydroxytryptamine, and bradykinin stimulate abdominal visceral afferent fibre endings in cats. American Journal of Physiology 250, R465473.
  • Miller, S. M. & Szurszewski, J. H. (1997). Colonic mechanosensory afferent input to neurons in the mouse superior mesenteric ganglion. American Journal of Physiology 272, G357366.
  • Richards, W., Hillsley, K., Eastwood, C. & Grundy, D. (1996). Sensitivity of vagal mucosal afferents to cholecystokinin and its role in afferent signal transduction in the rat. The Journal of Physiology 497, 473481.
  • Sengupta, J. M. & Gebhart, G. F. (1994). Gastrointestinal afferent fibers and sensation. In Physiology of the Gastrointestinal Tract, 3rd edn, vol. 1, ed. Johnson, L. R., pp. 483519. Raven Press, New York .