The effect of tetracaine on stimulated contractions, sarcoplasmic reticulum Ca2+ content and membrane current in isolated rat ventricular myocytes


Corresponding author D. A. Eisner: Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 3BX, UK. Email:


  • 1The effects of tetracaine were examined on rat ventricular myocytes. In both field-stimulated and voltage-clamped cells tetracaine (100–200 μM) produced an initial decrease of contraction before a recovery towards the control level. Removal of tetracaine produced a transient overshoot of contraction to levels greater than the control.
  • 2The transient decrease of contraction produced by tetracaine was accompanied by a small transient increase in the integral of the L-type Ca2+ current and a larger transient decrease of the Na+-Ca2+ exchange current on repolarization. These are attributed to decreased systolic release of Ca2+. On removal of tetracaine there was an increase of the Na+-Ca2+ exchange current. Before the addition of tetracaine, calculated Ca2+ influx and efflux across the sarcolemma were approximately equal. On adding tetracaine, efflux was transiently less than influx and, on removal of tetracaine, efflux was greater than influx.
  • 3These changes in Ca2+ fluxes result in an increase of cell Ca2+ during exposure to tetracaine. The calculated magnitude of this increase was equal to that measured directly by applying caffeine (20 mM) to release sarcoplasmic reticulum (SR) Ca2+ and integrating the resulting Na+-Ca2+ exchange current.
  • 4It is concluded that the effects of tetracaine can be accounted for by depression of calcium-induced Ca2+ release (CICR). The response is transient because the inhibition is compensated for by an increase of SR Ca2+ content such that there is no steady-state effect on the magnitude of the systolic Ca2+ transient. The consequences of this result for the effects of other modulators of CICR are discussed.